P R :o C EE DI N G S
EXPERT SYSTEMS WORKSHOP |

April 1986

[] D-I:I- HiEININE

AD-A170 399

H B EE B/ E(EEm
DDD- DI:II:]DE]D

-L\ I HIR .
-1'&'1-"*'—1*.- NOO000

OMC FILE copy

DT Ic | " DISTRIBUTION STATEMENT K *
Approved for' public re!me;'f
ELECTE Sponsored by: !M Distribution Unlimited /"]

JUL 29 1088 m
e
86 7 20 046

~ Defense Advanced Research Projects Agency
- Information Processing Techniques Office

AD/A170 399

EXPERT SYSTEMS WORKSHOP

Proceedings of a Workshop
Held at

Asilomar Conference Center
Pacific Grove, California
April 16-18, 1986

Sponsored by the
Defense Advanced Research Projects Agency

Science Applications International Corporation
Report Number SAIC-86/1701

Lee S. Baumann

Workshop Organizer

This report was supported by

The Defense Advanced Research

Projects Agency under DARPA

Order No. 34586, Contract No. MDA903-84-C-0160
Monitored by the

Defense Supply Service, Washington, D.C.

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the United
States Government.

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT DF COMMEI CE
SPRINGFIELD, VA, 22161

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

UNCLASSTFEIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE RS Al it oo S

T. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

1 399

S. TYPE Olg REPORT & PERIOD COVERED

SAIC-86/1701

&. TITLE (and Subtitte) FIFOC 557/4/ S
EXPERT SYSTEMS WORKS"DP ANNUAL TECHNICAL

i April 1986 ‘ October 1985-April 1986

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) 8 CONTRACT OR GRANT NUMBER(®)
LEE S. BAUMANN (Ed.) MDA903-84-C-0160
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
!

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION AREAE DTS DN MUMOERS
1710 Goodridge Drive, 10th Floor ARPA ORDER No. 3456
McLean, Virginia 22102

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agenc April 1986
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 197
14. MONITORING AGENCY NAME & ADDRESS(!f different from Controiting Office) 1S. SECURITY CLASS. (of thie report)

UNCLASSIFIED

ISe. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Biock 20, If different from Report)
7

e~

|
]
{ 18. SUPPLEMENTARY NOTES
|
|

19. KEY WORDS (Continue on reveree elde if neceseary and identify by biock number)

Expert Systems, Artificial Intelligence, Knowledge Engineering, Experimental
Knowledge Systems, System Building Tools, Reasoning with incomplete infor-
mation, Reasoning with uncertain information, Knowledge Acquisition, Problem

solving frameworks. b
20. ABSTRACT (Continue on reverea side if neceseary and identify by block number)
| This document contains the technical papers for the Expert Systems Program 4

which were presented by the key research specialists from the research
activities participating in this program sponsored by the Information "
Processing Techniques Office, Defense Advanced Research Projects Agency.
The reviews of these papers were presented at a worksliop conducted on 16-18
L April 1986, at Asilomar Conference Center, California.

|

l

; DD , 5%, 1473 eormion oF 1 Nov 6515 OBSOLETE |

‘ R | UNCLASSTFIED]

SECURITY CLASSIFICATION OF TH{S PAGE (When Deta Entered)

The BBN Laboratories Knowledge Acquisition Project: 1
KREME Knowledge Editing Environment '

G. Abrett, M.H. Burstein

BBN Laboratories

Experimental Knowledge System Laboratory Progress 22
Report on Reasoning Under Uncertainty °

P. Cohen and EKSL Group

University of Massachusetts

TABLE OF CONTENTS
Page
FOREWORD .veeecococcosesssoscsccossssssssoscscsoscssccsssosssnce i
AUTHOR INDEX .cccoceocsosososcsscscssoscscecsosscsscscscscccscscs vi
TECHNICAL PAPERS

Progress in Reasoning with Incomplete andccceee-ves 46
Uncertain Information
P.P. Bonissone, G.B. Porter III, A.L. Brown, Jr.
General Electric Company :

Selecting Uncertainty Calculi and Granularity: 48
An Experiment in Trading-off Precision and Complexity

P.P. Bonissone, K.S. Decker

General Electric Company

L .

Summarizing and Propagating Uncertain Information 62
with Triangular Norms ’

\ P.P. Bonissone

' General Electric Company

by Analogy
G.B. Porter, III
General Electric Company

|
]
(Monad A Hierarchical Model Paradigm for Reasoning 72 :
|
|

Modal Propositional Semantics for Reason Maintenance ... 77
Systems °
A.L. Brown, Jr.
General Electric Company :

Reason Maintenance From a Lattice-Theoretic Point 83

of View |
D. Benanav, A.L. Brown, Jr., D.E. Gaucas
General Electric Company

,
\

- T -

TABLE OF CONTENTS (Cont'd)

TECHNICAL PAPERS (Cont'd)

Engineering Intelligent Systems: Progress Report 89
on ABE-

L.D. Erman, J.S. Lark, F. Hayes-Roth

Teknowledge Inc.

Explanation, Problem Solving, and New Generation 101
Tools: A Progress Report!

B. Chandrasekaran, J. Josephson,

with contributions by M.C. Tanner, A. Keuneke,

D. Herman, D. Allemang, T. Johnson

Laboratory for Artificial Intelligence Research

The Ohio State University

Generic Tasks in Expert System Design and Their ceeesee. 127
Role in Explanation of Problem Ssolving '

B. Chandrasekaran

Laboratory for Artificial Intelligence Research

The Ohio State University

Representing Actions with an Assumption-Based 136
Truth Maintenance System '

P.H. Morris, R.A. Nado

IntelliCorp

/CAGE and POLIGON: Two Frameworks for Blackboard-~ 142
based Concurrent Problem Solving '

H.P. Nii

Knowledge Systems Laboratory

stanford University

User-Directed Control of Parallelism; The CAGE System .. 146
N. Aiello
Knowledge Systems Laboratory
stanford University

Poligon, A System for Parallel Problem Solving 152
J.P. Rice
Knowledge Systems Laboratory
Stanford University

Il | ol . bR S s

TABLE OF CONTENTS {(Cont'Q@)

Page

TECHNICAL PAPERS (Cont'd)

The CAOS SYSLEM ‘vevereeececoncsccsscesosasassesssssssess 160
E. Schoen
Knowledge Systems Laboratory
Stanford University

CAREL: A Visible Distributed Lisp .e.ieiivevenncnoenass 171
B. Davies
Knowledge Systems Laboratory
Stanford University and
Corporate Computer Science Center
Texas Instruments

Multi-System Report Integration Using Blackboards '...... 179
J.R. Delaney
Knowledge Systems Laborat»sry
Stanford University

AIDE: A Distributed Environment for Design and

Simulation ' ***f§orking Paper*** ,............c.. RO G00 o ... 185
N.P. Saraiya
Knowledge Systems Laboratory
Stanford University

Recent Developments in NIKL :v..eeeeuoeeoeracnosocsonaaoas 191
T.S. Kaczmarek, R. Bates, G. Robins
UsC/Information Sciences Institute

.

Use the title on the front cover. J
Per Mr. Lee S. Baumann, Science Applications
International Corp.

FOREWORD

A workshop for research personnel involved in the
DARPA program on Expert Systems was held in Palo Alto and at
the Asilomar Conference Center, Monterey, california, from
16-18 April 1986. The purpose of the workshop was to demon-
strate working systems tools and to review progress on the
technical aspects of the research being undertaken. Research
organizations participating in the workshop included the
University of Massachusetts at Amherst; Ohio State Univer-
sity; Stanford University; the Information Sciences Institute
of the University of Southern California; Bolt, Beranek and
Newman Laboratories, Inc.; General Electric Corporation;
Teknowledge, Inc.; and the IntelliCorp Company. Representing
the Department of Defense in addition to the DARPA program
manager were experts £from the Rome Air Development Center,
the Air Force Wright Acronautical Laboratories, the Space and
Naval Warfare Systems Command, and the Naval Underwater
Systems Command. Also attending was a representative from
Texas Instruments, the integration contractor for the Navy

Battle Management Program.

This proceeding is intended to document important
progress being made in the knowledge-based systems part of
the DARPA Strategic Computing Program. The papers included
give a good insight into the current accomplishments.
Included in this foreword is a short documentation of the
demonstrations that were presented but are not further

described in the proceedings.
The workshop met on Wednesday, 16 April 1986, in

the new offices of Teknowledge, Inc., in Palo Alto,
California. The first morning consisted of a series of live

-i- d

P .

A e,

Y

demonstrations given by IntelliCorp, Ohio State University
and Teknowledge. CDR Allen Sears, the DARPA program manager,
welcomed the forty attendees to the demonstration and thanked
the Teknowledge people for their assistance in setting up the
demonstrations, providing the necessary equipment, and their
hospitality in providing conference space to view the
programs. Ohio State University provided the lead off demon-
stration. Dr. Chandrasekaran, the principal investigator,
explained that the program was a prototype mission planning
associate in the domain of an offensive counter air planning
task. This is, he explained, a generic tool using DSPL
representation. DSPL is a language developed at Ohio State
which uses knowledge representation iich in planning primi-
tives. Dave Herman, Dean Allemang and Anne Keuneke of Ohio
State explained the workings of the system as the demonstra-
tion progressed. The program accepted the plan inputs and by
use of design plans selected the aircraft type and ordnance
configuration most appropriate for the mission factors under
consideration. In making its selection the program uses a
functional representation of the plan and the capture of the
agents understanding of how things work. This includes as a
piece of knowledge the order that things are considered in
the planning cycle. The audience was able to see on the
screen the progression of the 1logic flow as the events
progressed.

Dr. Rick Hayes~Roth explained the genesis of the
Teknowledge research effort as the creation of a foundation
on which to build systems with reusable knowledge processing
modules and skeletal systems, modularity and standard inter-
faces, encapsulation and cooperative systems, integration of
technologies, and the ability to take partial solutions off
the shelf and put them together into new systems thus provid-
ing customized solutions to new problems. Hayes-Roth stated

that the program is a twenty four month effort of which they
were now eleven months into the r=zsearch. The Teknowledge
system, called ABE, was able to integrate new modules into
its tools catalogue and to provide a capability to use which-
ever tools best suited the problem domain. The system archi-
tects' catalog contains applications, customizations, skele-
tal systems, capabilities, abstract data types, frameworks,
and languages in a descending order of layered structures.
As goals, the ABE project deems it important to import tech-
nologies, layer systems, and glue them together in a robust
and disciplined way. The demonstration covered six items:
the system architects catalog, a first example, composing
frameworks, importing a capability, variations, and composing
with heterogeneous frameworks. Assisting in the demonstra-
tion were Lee Erman, Jay Lark, Terry Barnes, Kamal Bijlani,
Michael Fehling, Bruce Bullock, and Neil Jacobstein.

The IntelliCorp demonstration was presented by
Richard Fikes. He explained that the essence of their pro-
gram was to take pieces of A.I. technology and integrate them
for use in systems., The outcome is to develop tools which
may be used by others. KEE, the central IntelliCorp product,
has been in use for several years, Fikes noted, and the pro-
tocols for access and use of the system have remained stand-
ard. The recent effort is to develop new tools, such as
distributed knowledge bases, and to fit these new tools into
KEE for use by applications developers. The DARPA program
has now been on-going for one year and a new initial set has
been produced called DARPA-KEE. They have built interfaces
to an assumption based truth maintenance module and to world
based problem solving routines. The demonstration was
designed to include model based reasoning, symbolic descrip-
tion and reasoning about descriptions. The domain selected
involved knowledge based tools to aid the dispatcher of a

~iii-

e

trucking delivery system over a mid-west geographical area.
Involved were manual context exploration, a semi-automatic
task completion rule system, and programmatic automatic
problem solving routines. The progression of the task was
easily followed on the terminal screen as the problem moved
from initiation to suggested solutions and as new parameters
were added or changed.

CDR Sears remarked that the demonstration proved
that a lot has happened in the year since the program was
initiated and that we are now looking at bringing technology
to the applications developers. This, he noted, will require

planning to insure successful implementation.

The remainder of the workshop was conducted at the
Asilomar Conference Center. Each of the organizations
attending presented one or more technical reviews of the
status of the expert systems research being undertaken in the
DARPA program. This proceeding contains copies of those
reviews in order to provide a wide distribution of the pro-
gram and results achieved to date. Following the technical
talks, the participants discussed applications and transition
strategy, future goals, and integration of expert system
technology with other parts of the DARPA research program.
The program concluded with a discussion of high level tools
for expert systems led by Dr. Chandrasekaran of Ohio State
University.

The cover layout for this proceedings was created
by Tom Dickerson of the Graphics Department at SAIC using
diagrams of a multicast-map from the paper: “"CAREL: A
Visable Distributed Lisp," by Byron Davies of the Knowledge
Systems Laboratory at Stanford University and of the Texas
Instruments Corporation. The diagrams are samples from the

—jv—-

execution of the IDENTIFY-YOURSELF program which is described
in Davies paper included herein. This proceedings has been
provided to the Defense Technical Information Center (DTIC)
and copies may be secured from that agency.

Lee S. Baumann

Science Applications International
Corporation

Workshop Organizer

-

NAME
Albrett, G.
Aiello, N.
Allemang, D.
Bates, R.
Benanav, D.
Berman, P.
Bonissone, P.P.
Brown, A.L. Jr.
Burstein, M.H.
Chandrasekaran, B.
Cohen

Davies, B.

Day, D.

Decker, K.S.
Delaney, J.R.
Delisio, J.
Erman, L.P.
Gaucas, D.E.
Greenberg, M.

Hayes-Roth, F.

AUTHOR INDEX

PAGE NAME
1 Herman, D.
146 Howe, A.
101 Johnson, T.
191 Josephson, J.
83 Kaczmnarek, T.S.
22 Keuneke, A.
46, 48, 62 Kjeldsen, R.
46, 77, 83 Lark, J.S.
1 Lewis, D.
101, 127 Morris, P.H.
22 Nado, R.A.
171 Nii, H.P.
22 Porter, G.B. III
46 Rice, J.P.
179 Robins, G.
22 Saraiya, N.P.
89 Schoen, E.
83 Stanhope, P.
22 Tanner, M.C.
89

-yvi-

101
101
191
101
22
89
22
136
136
142
46,
152
191
185
160
22

101

72

TECHNICAL PAPERS

B A

The BBN Laboratories Knowledge Acquisition Project:
KREME Knowledge Editing Environment

Glenn Abrett and Mark H. Burstein

BBN Laboratories
10 Moulton Street
Cambridge, MA 02238

Abstract

One of the major bottlenecks 1n large-scale expert
system development 1s the problem of knowledge
acquisition. the construction, meintenance, and testing of
large knowledge bases. The BBN Laboratories knowledge
Acquisition Project 1s 1nvestigating ways of easing these
problems and. where possihle, auloma ,ng the knowledge
acquisition process Tlus paper details the current state
of development of the IIREME Knowledge Representation
Editing and Modeling Environment KREME 15 an
extensible experimental environment for developing and
editing knowledge bases using a variety of styles of
representations It provides tools for effective viewing
and browsing 1n each kind of representational base,
automatic consistency checking, and macro-editing
facilities to reduce the burdens of large scale knowledge
base revision and reformulation. Our goal 1s to explore a
number of approaches to knowledge acqusition and
knowledge editing that could be 1ncorporated into

existing and future full-scale expert system development
environments.

1. Introduction

1.1. The Knowledge Acquisition Problem

There 1s substantial agreement within the Al
community that the way to make expert systems more
closely approximate the level of performance exhibited by
people 1s to give the systems more knowledge. The
creation of the large and detailed bodies of knowledge
needed to substantially mmprove performance has proven
to be excrutiatingly pamnful. Beyond a certain point,
several factors make the building of very large knowledge
bases a practical impossibihty with current technology.

Knowledge comes in many forms.

Humai: knowledge about the world comes i1n many
disparate forms Squeezing all the knowledge that an
expert system needs into one, or at best two,
representational formalisms (e.g rules and frames) 1s
difficult, time consuming, often 1nappropriate and, 1n
many cases, an Inadequate solution to the task at hand.

"This research was supported by the Defense Advanced
Reseorch Projects Agency of the Deportment of Defense ond was
monitored by RADC under controct number F30602-85-C-0005.

A=

Managing large knowledge bases is difficult.

As knowledge bases grow 1n size and complexity
they strain the capacities of software tools for knowledge
editing, maintenance, and vahdity checking. Viewpoints at
the right level of detall are hard to construct,
consistency checking tekes up more and more time, and
global reorgamzations and modifications can no longer be
done easily one plece at a time. Eventually, user
confidence 1 the 1nternal coherence of the knowledge
base erodes and must be restored by the inefficient.
incomplete, and indirect method of running applications
programs using the knowledge base

Previously encoded knowledge is not re—used.

1t 1s customary to start buillding a new expert
system with an empty knowledge base, even though the
completed knowledge base will contain at least some
general knowledge about the world. To make matters
worse, this general world knowledge 1s usually entered n
a fragmentary and sketchy manner that adds little to the
power of the system If general knowledge about the
world could be transferred across systems, the gradual
accumulation of detall, precision, and richness which
would occur would tremendously enhance the
performance and robustress of most individual expert
systems.

1.2. Overview of the BBN Knowledge Acquisition Project
Our goal has been to develop an environment in
whici. the problems of knowledge acquisition faced by
every knowledge engineer attempting to build a large
expert system are mimmized To this end, we have
organized the task of developing knowledge acquisition
tools mnto two stages. First, we are developing a well-
integrated know'edge representation, editing and
modeling environment. dubbed KREME. Knowledge
engineers and subject matter experts with some
knowledge of basic knowledge representation techniques
will find 1t easy to use KREME to acquire, edit. and view
from multiple perspectives knowledge bases that are
several times larger than those found 1n most current
systems KREME provides. within a uniform environment,
special purpose editing facihties that permit knowledge
to he represented and viewed 1n a variety of formalisms
appropriate to its use, rather than forcing all knowledge
to be represented in a single, unitary formalism During
phase two of the project, we will consider such automatic
Kinds of knowledge acquisition as developing
representations from examples, and learning by analogy.

In addition to a general editing environment. the

first phase has also focused on developing tools that
provide the kinds of validation and consistency checking

S

RPIET B . SR

I ST NP

|
?
|
g
»
|
P
1
?

so essential during the development or modification of
knowledge bases. As the size of knowledge bases grow,
and more people become 1nvolved 1n their development,
this aspect of knowledge acquisition becomes increasingly
mmportant In the hybnid or multi—formalism
representational systems that are becoming prevalent
[11. 2, 19], techmiques must be provided for consistency
checking not only within a single representational
system, but between related systems.

A third mportant area of 1nvestigation in
developing the KREME editing environment has been the
atteinpt to provide of facilities for laige—scale rewvisions
of portions of a knowledge base. Our experience
indicates that the development of an expert system
mevitaclv requires systematic, large scale revisions of
portions of the developed representation. This 1s often
caused by the addition or redefinition of a task the
system 1s to perform. These kinds of systematic changes
to a knowledge base have, to date, only been possible by
painstaking piecemeal revision of each affected element,
one at a time. Our imtial approach has been to provide
a macro—edifing facihty, in which the required editing
operations can be demonstrated by example and apphied
to specified sets of knowledge structures automatically.
We plan to provide a hbrary of such generic macro-
editing operations for the most common and conceptually
simple (though potentially difficult to describe)
operations during phase two of the project

1.3. The KREME Knowledge Editor

KREME attempts to deal with the inextricably
related problems of knowledge representation and
knowledge acquisition in a unified manner by organizing
multiple representation languages and multiple knowledge
editors inside of a coherent global environment. A key
design goal for KREME was to build an environment 1n
which existing knowliedge representation languages,
appropriate to diverse types of Lknowledge, could be
integrated and orgamzed as components of a coherent
global representation csystem, As 1t 1s presently
conceived (and for the most part implemented) the KREME
Knowledge Editor can be thought of as an extensible sel
of globally coherent operations that apply across a
number of related knowledge representation editors, each
tallored to a specific type of knowledge Our appruach
has been to integrate several existing representation
languages 1 an open ended architecture that allows the
extension of each of these languages. In addition, we
have provided for the 1ncorporation of additional
representation languages to handle additional types of
knowledge.

To accomphish this goal, we envisioned a
decomposition of existing knowledge representation
techniques, to be implemented as objects or FLAVORS [6],
m terms of which we could reimplement existing
representation languages. Each object encoding an
aspect of some representation would be responsible for
its own display, editing and internal forms. By
orgamzing this "meta-knowledge base” modularly,
behavioral objects 1mplementing 1nheritance behavior,
subsumption testing, and coreference mechanmsms, etc,
could be "mixed 1n" to a number of representational
subsystems.

The current 1mplementation of KREME partially
accomplishes our goal. We have organized a small hbrary
of component behavioral objects for knowtedge
representations and succeeded 1n remmplementing our
frame language 1n terms of this object base We expect
this hbrary to be an extremely useful set of building
blocks as we attempt various extensions to the
expressive power of our system,

The current version of KREME contains individual
editors for three distinct representation languages, one

for frames, one for rules and one for procedures. The
frame and procedure editors are fully integrated into the
global environment and the rule editor 1s 1n the process
of becoming so Eventually, the rule editor, the
procedure editor and a functional method editor will all
be accessible through a global mechanism that treats
these types of Lknowledge as forms of procedural
attachment to concepts In phase two of the project, we
plan to add a language for representing causal and other
qualitative constraint systems, and several types of
instantiation mechanisms, including ¢ truth maintenance
system for propositional representatiomn

1.4. The KREME Frame Language

Much of the wurk done in the current
mmplementation of KREME has been focused on building a
knowledge editor for a frame representation language.
Such languages have been well researched, and while we
had to have some frame language on which to base sur
mitial editor, we did not want to design and implement &
new one. Our most important criteria for a suitable
frame representation language were that 1t.

1 Allowed multiple inheritance
2 Was a logically worked out mature language.

3. Had some mechanism for internal consistency
checking.

4. Would allow individuals to be 1nstantiated as
aobjects from the defimtions of frames.

5. Was built on a modular object oriented base so
that the language could be decomposed 1n such
a way as to make 1t easily extensible.

NIKL (the defimitional or frame language component
of KL-TWO) [9. 14, 19] seemed an ideal candidate 1t 1s &
fully worked out frame representation language that
allows multiple inheritance, 1s reasoneably expressive and,
perhaps most i1mportantly, contains a fully worked out
automatic classification algorithm that could be easily
adapted to provide a powerful mechamsm for consistency
checking and enforcement during knowledge base
development. However, no object-oriented
implementation of NIKL existed, and the NIKL classifier
was not designed to allow modification and
reclassification of previously defined concepts. A second
frame language, known as MSG. had been built as part of
BBN's STEAMER project and was readily available. M3G 1s
object oriented 1n both of the above senses but i1t has no
classifier and is not as mature or thoroughly specified a
language as NIKL.

To develop KREME, we elected to reimplement NIKL
as an object oriented language using MSG as a guide.
The NIKL data structures were decomposed into a
modular hiererchy of flavor definitions, and the KREME
version of NIKL was then built out of these flavors. This
enabled us to incorporate a great deal of the fairly
sophisticated 1nstantiation mechanism of MSG with
minimal effort. In the process, we were also able to re—
implement the NIKL classifier algorithm to provide the
kind of reclassification capabihty required for a
knowledge editing environment. We will refer to this
enhanced, ob)ect oriented 1mplementation of NIKL as
KREME Frames.

The remainder of this section will review the basic
features of the KREME Frames language. As the
defimtional syntax of KREME Frames coincides almost
exactly with the structure of the NIKL language,
interested readers are referred to [9] for more detail
Section 2 will describe the KREME editing environment

-

e

and the frame editor. Section 3 will discuss the
classifier, and 1ts use 1n an nteractive editing
environment.

1.5. Definition of KREME Frames

In KREME, a frame is called a concept. Collections
of concepts are organized into a rooted inheritance or
subsumption laltice sometimes referred to as a faxonomy
of concepts. A single distinguished concept. usually
called THING, serves as the root or most general concept
of the lattice. Figure 1-1 shows a simple subsumption
lattice.

A concept has a name. a textuas description, a
primitiveness flag. a lst of defined parents (concepts
that it specializes or 1s subsumed by), a hist of role
restrictions, a list of role equwvalences, and a list of

concepts that 1t 1s disjoint from2 In KREME. as in NIKL,
a8 concept may be subsumed by more than Just the
concepts that were 1its defined parents. Thus. classified

Figure 1-1. A Simple Concept Taxonomy

concepts 1n a KKEME hierarchy also contain distinct lists
of those concepts that directly subsume 1t, and those
which 1t directly subsumes or are its direct children.

(defconcept HOUSE
cprimitive t
:specializes (building)
:role-restrictions
((residents (a person) nil (a person))
(front-door (o door} (1 1) (a door}))
cequivalences
({main-entrance) (front-door))
:disjoint (office-building aportment—building))

Figure 1-2: LISP form of a KREME frame defimtion

The hsts of role restrictions, role equivalences and
disjoint concepts are collectively referred to as the
features of a concept. If cach concept can be thought
of as defining a unique category, then features of the
concept define the necessary conditions for inclusion in
that category. If a concept 1s not marked as primitive (a
case sometimes referred to as a defined concept) the
features also constitute the complete set of sufficient
conditions for inclusion 1n that category. A concept
inherits all features from those concepts above 1t in the

Zone concept is disjoint from oanother if being one
precludes being the other.

lattice (those concepts that subsume 1t. and, thus, are
more general) and may define additional features that
serve to distinguish it from its parcnt or parents.

Role restrictions define the necessary slot-value
pairs for any instance to be considered a member of the
class defined by a concept A role restriction consists of
.a role name, a value restriction, a number restriction
and an (optional) default form®°

The role name refers to an object called a role.
Roles 1n KREME, as 1n NIKL and some other frame
languages hke KEE [5], and KnowledgeCraft [7). are
actually distinct, first class objects Roles describe
relations between concepts. A role restriction at a
concept 1s thas a specification of the ways a given role
can be used to relate that concept to other concepts.
As first-class objects. roles form themrr own distinet
taxonomy. rooted at the most general possible role,
usually called RELATION Figure 1-3 shows a portion of a
simple role taxonomy.

ralatian

oroparty

Figure 1-3: A Simple Role Taxonomy

A role has a name, a description, a lhist of roles
that 1t specializes, a domain and a range. 1n a formal
sense, a role 1s a two-place relation that maps 1nstances
of concepts 1n 1ts domain onto sets of Instances 1n 1its
range. The domain of a role is the most general concept
at which the role makes sense That 1s, 1t specifies the
class of things for which the role can name a slot. The
range of a role specifies the general class of concepts
that can serve as values 1n slots defined using that role.
All concepts filing slots whose name 15 a given role must
be elements of the range of that role.

Each role restriction at a concept has as part of
Its definition a value restriction, which 1s the class of
allowed values for that slot. The value restriction must
always be a sub-class of the range of that role, and a
subclass of the value restrictions defined for that role at
all concepts subsuming the one restricted. At present,
following the structure of NIKL. value restrictions must
be defined concepts We expect to relax this constraing
in the near future.

Role restrictions also include a number restriction
that specifies the mimimum and maximum (if any) number
of things that may be related by the role to the concept
at any given time For example, 1f all elephants have
four legs, then the concept ELEPHANT might be defined to
restrict the role LEGS to Exactly 4 ELEPHANT- LEGs?* A
number restriction must be at least as specific as all the
number restrictions for the same role et any of the
concepts parent?s

Role Equivalences describe slots (and slots of slots)
that by definition refer to the same entities. They are
defined &s peirs of paths whose referents are the same
concept A path 1s a hst of role names, the head of which
1s & role restricted at the concept defimmmg the

‘3Defaults were not part of the definition of NIKL

_—
S

e

equivalence. Each subsequent role (slot name) in a path
mus’ be a valid slot in the concept that is the value
restriction of the previous role in the path The referent
of a path 1s the value restriction of the last role
restriction 1n the chain. Figure 1-4 shows a simple
example of role equivalence.

The SUCTION of the PUMP is equivalant to the
INLET of the SUCTION VALVE of the PUMP.

Figure 1-4: A Role Equivalence

Concepts marked as primitive (sometimes referred
to as Natural Kinds) have no complete set of sufficient
conditions For example, an ELEPHANT must, by
necessity, be a MAMMAL, but without an exhaustive list of
the attributes that distinguish it from other mammals, 1t
must be represented as a primitive concept WHITE
ELEPHANT, on the other hand, mght be completely
described by stating that it is a specialization of
ELEPHANT, where the role COLOR was restricted to WHITE

KREME Frames permit slots to have default values
as well as value restrictions. If present, the default must
be the description of some concept which satisfies the
restrictions on the role at that concept. The default 1s
used as a slot filler for instances of a concept that do
not specify a value for the slot at instantiation time
Defaults are inherited from the most specific parent at
which they are defined, just as n most other frame
languages, rather than by logical set intersection, as the
classifier does for other KREME concept features.
Specialization of defaults 1s not enforced Figure
1-5 shows an example of default inheritance. Here, the
default color of elephant is grey, while the color of a
white elephant 1s white. which 1s not a speciahzation of

grey.

restriction

white rastriction and dafault
elephant

Figure 1-5. Restrictions and Defaults

4[.9., Number restriction: min = 4, max = 4; Value
Restrictian: (an ELEPHANT-LEG).

5A number restriction af Exactly 7 (min = max = 1) is mare
specific then a number restrictian of At most 2(min = @, max
= 2.

ke

1.5.1. Instantiation

We envision that a number of different instantiation
mechanisms may be appropriate for KREME Frames. NIKL,
as part of the KL-TWO system, instantiates concepts as
predications in the RUP truth maintenance system i8] on
the other hand, MSG instantiated concepts as flavor
instances, and this 1s the nstantiation mechamsm
currently provided by KREME Frames. We plan to provide
a truth maintenance system as an alternative form of
instantiation 1n the future

When & concept 1s defined, a corresponding flavor
is also defined. This flavor 1s composed of the flavors
corresponding to the concept's immediate parents and an
additional flavor called KROBJECT which provides the
additional functionahty required for instances of KREME
Frames.

Instances of a concept (also known as objects) are
created by the MAKE-OBJECT function. MAKE-OBJECT
creates an instance of the concept's corresponding
flavor, nstalls defaults in unfilled slots, and installs
coreference-handiing objects in each slot for wlich a
role equivalence was defined at the concept The same
coreference object 1s placed in all equivalent slots
These objects are "transparent” to the siot access and
modification functions. Modifying any equivalenced slot
changes the value of the coreference object, and
accessing such slots returns the coreference object’s
value (rather than the object 1itself).

2. The Knowledge Editor

2.1. Background

The KREME Knowledge editor currently consists of
three editor modules, a frame editor, a procedure editor,
and a rule editor, and a large tool-box of editing
techniques that are shared among the editor modules

The original design goal was a global editing
environment tliat could accommodate distinct editor
modules for the various kinds of knowledge that would be
represented. However, from the point of wview of the
user, there would be a single editor with the interfaces
between the modules completely transparent Moreover,
the user would see a single, integrated knowledge base
that had various means for orgamzing different types of
knowledge. The user would move through this space by
pointing at various knrowledge chunks which would cause
the system to present an appropriate view Alternatively,
the user could directly request a specific view for a
specific piece of knowledge

2.2. Basic Features

2.2.1. Views

Each distinct type of representation included in the
system {currently concepts, roles, procedures and rules)
has defined for 1t one or more Views. A view 1S a
collection of panes in a Symbolics window configuration,
each of which displays some aspect of the particular
prece of knowledge being edited and/or a set of editing
operations on 1t. A view can show various aspects of the
specific piece of knowledge as well as various deteaals of
the context in which the piece exists

When the user desires to enter or edit a specific
piece of knowledge, the system opens the most
appropriate view for the type of knowledge and the
editing operation requested When editing a particular
piece of knowledge, the user has available a menu of
different views which are appropriate for different
aspects of that knowledge and can be accessed from a
menu.

Lige o Taralbel £+ isem 4
Abstractions and SBpeciallzations of ‘1-PORT-DEVICE'
Bl Concesgt
Concept: 2-PORT -0 U1
Frimitive: YES
fipecializes: THING
Mescriptlon: btwn port devices

Add Hestriction
Local Restrictions

Leraned tee File ”l_l;'l"?l'il'e,"l WEINn Nalne peirtr ot o Defaute

Lo [H) C-FORT-DEY[CE
€Oy AL
[Classified; lnmodified] € 0] FEETVURE-EEGHLATING»5] F
* "
Kill Redundant Hestrictions
All Restrictions & Edipor pocd

[te o et vin

VLOTAL TOTLET E.act 1o 1 v POFT) i& FOFT)
Lmat e INLET E-3crle] iP5 FOFTY (A PAFT

Figure 2-1: A g~ - with overview

2.2.2. Pointing

Pointing with the mouse 1s the primary means for
performing editing operations. browsing. adding, and
modifying definitions. In general, all visible references to
an object can be pointed at, in order to view the object
In more detail. For example, a concept can be displayed
as a node 1n a graph, as a value restriction or default,
as a parent of another concept. or as an item on the
editor stack. Whatever the form of the display, the
displayed item will respond to the same set of operations
when someone points at 1t. Similarly, when the system
requires the entry of a concept name, the user may
either type the name or point at any visible concept
name In windows displaying features of conc ept
definitions, pointing also 1s used to tell KREME to replace
parts of those defimitions.

Commands that cannot be performed by pointing
directly at an object are usually contained 1 command
menus which are associated with particular windows 1n
each editor view. Such commands are used for changing
views, entering new concept definitions, loading and
saving taxonomes, etc.

2.2.3. The Grapher

The KREME grapher 1s a powerful, generalized
facility that rapidly draws lattices of nodes and links At
present, i1ts main use 1s to provide a dynamically updated
display of the concept or role currently being edited and
all of its classifier determined abstractions and
specializations. Other concepts may be added to the
displayed graph at any time simply by pointing at a node
that 1s already present and requesting all of its
abstractions or specializations to be displayed as well
Nodes and their children (or just the children) may also
be concealed or removed from a presented graph 1if they
are not relevanm and are making 1t hard to read other
portions of the graph. One may also point at nodes to
show a textual form of their current definition and to
edit the defimitions (which pushes the current definition
on the editor stack, as it does by pomting at 1t in other
displays).

An important featu e of the grapher 1s that 1t can
display graphs that ar¢ much larger than the window
through which 1t 1s vewed. When dealing with large

taxonomies, pointing at the graph anywhere else but at
nodes and dragging the mouse causes the grapher to pan
In the direction of mouse motion, making previously
obscured portions of the graph instantly wvisible as
though one was moving a window across a larger page
The grapher also provides an "overview" facility to show
the shape of the full graphed lattice. Pointing at
positions 1 the overview 1s another way to move to a
particular part of the lattice. Figure 2-1 shows a graph
of one portion of the STEAMER frame base, with the
overview exposed.

Currently, the grapher can be used to display only
directed lattices with no loops, e.g., specialization
hierarchies and relationships like part-whole. We expect
to use the grapher to display arbitrary networks of
relationships between between sets of concepts. These
other kinds of views are critical for displaying partially
ordered plan sequences, causal relationships and
constraint systems in general.

2.2.4. Buffers and the Editor Stack

The editor maintains a level of indirection between
the knowledge being edited and the representation of
that piece of knowledge in the knowledge base. This 1s
done by the mechamism of editor buffers, analogously to
the distinction between & text editor buffer and an
assoclated file. Chenges are always made to definition
objccts, which can be subsequently classified The editor
maintains a stack or hst of the objects that have heen
edited, and constantly displays this list, indicating whech
ones have been modified and not reclassified.

The top item 1n the stack 1s the definition
currently being viewed and edited. The user 1s free to
modify this defimtion 1n any way without directly
effecting the krowledge base When the modified
definition 1s to be placed into the knowledge base &
defining function appropriate to the type of knowledge
(e g, classification for concepts and roles), 1s executed
and the knowledge base 1s modified.

The editor stack 1s always visible in its own window
and provides one convenient method for browsing The
user may make any definition item currently 1n the stack
the top, visible item by pointir,; at it. The object will be

i oad LGiaved Network
| Save Network

New Concept o

{Automatically Operated Unlve}:l-k.*
{Locally Controlled Valve
[[Pressure Regulating Valve |—"

___-4;—

=~ Relief Valve ——___
R

New flole
Edit Role

Parameters Generalize

—..—===1 Unloading Valve ————

—{ Hannally Operated Ualvej—-ﬁ-..,_,“
Open Shut Unlve

{ Ganged Valve Pair |

Throttle Valve A ctivated Valve jr=———--.

\' ~~[Tso_Ai- Pilot Unloading Unlvej- T W

" {Stop Check Valve

S ‘?Stﬁu ﬂctlvnted Throttle Valve }j

[Miciroraeter Valve | Ualve

— ___--r——F’-_
———

-{ Guardian Valve

0] 3 Way Valve } {

Fuel 0il Circuit 3 Way Valve | "-“—i Rernotely Controlled Stop Valve |

Ahstractions and Specializations of 'VALVE'
Classify Concept Kill Concept

Concept: UALVE =

Primitive: YES

Specializes: 2-PORT-FLUID-DEVICE ®

Bescription: common 2-way valve

New Related Concept

Add Hestrjction Q Kill Hedundant Hestrictions
Local Restrictions All Restrictions . Edrbar Stk

L[5 U] YALVE

Change View
o n—— — T (U] PRECSURE-FEGULATING- VAL YVE

[Classified; Unnodified]

®

0ef rned o Fole Hambeei rest) 1ot san ERUCINICER NI TR [T D=f3alt Darcrmprion
C-FUFT-FLOTD-DEYICE THLEY E-acet)y | PA FLUTO-FOFT) o4 FLUIO-FOFT) i
C-POFT-FLIND-DEYICE DUTLEY E-acrly | PA FLUID-FRPTY (A FLUID-PDFT

P.‘Talc Fertroctions

@

Ldrtor Interaction Fane

J [g =d pan i H
R P pars Trol LHEFEDD paaan =

Figure 2-2: The Main Concept Editing View

displayed 1n the same editor view as when 1t was last
edited

2.2.5. Files and Multiple Language Support

All definitions manmipulated by the editor are read
and stored in lisp-readable text files of defining forms.
Files are created by the SAVE command which converts
each of the 1tems of the current knowledge base to its
LISP defining form and writes it to the file specified The
files are 1n human readable form and can be edited
offline using an ordinary text editor In fact, KRREME can
read files that were developed independently using a text
editor or some other frame editor.

Files are read in using the LOAD command A file
can be loaded into a blank KREME knowledge base or can
be loaded on top of an already existing knowledge base
This mechanism, which rehes heavily on the use of the
classifier to keep things coherent, enables KREME to
organize 1nformation from multiple knowledge bases to
create a single umfied whole.

KREME currently will read and write definitions 1n
elther its own frame language syntax or in NIKL syntax.
In addition, there is some customization of the displays
viewed while editing networks 1n either of these
languages (e.g., the presence of defaults 1n role
restrictions). This flexibility makes 1t possible for KREME
to be used regularly to examine and update a knowledge
base of approvimately 1000 roles and concepts for a
natural langrage query system that was built using KL-
TWO. KREME can also read files of MSG defining forms,

providing us access to the extensive STEAMER knowledge
base of concepts and procedures.

We feel that this multiple language handling facility
1s a crucial feature of KREME and are committed to
extending 1t, where possible, to other representation
languages. A rich hbrary of mput translation programs
will enable a knowledge base buillder. working in KREME,
to draw upon many previously existing knowledge bases
to create a larger and more detalled whole. It 1s our
opinion that this kind of flexibihity will be crucial if
knowledge bases developed 1n different languages are
ever to related and convemently modified to create a
greater whole. Civen the lavge miersection of features
provided by most current-day frame language
representation systems, we do not see this as an
impossible goal. In the near future, we will be considering
extensions of KREME Frames to provide an environment in
which many KEE knowledge bases could conceivably be
edited One of our goals in redesigning the classifier
was to make such extensions feasible

Frame Editor
editor for the KREME Frames representation
the most fully reahzed editor in the KREME
though we have a host of improvements and
planned for 1t, the current operational version
10 frame editor 1s already an extremely useful tool
for the creation, modification and viewing of KREME
Frames networks. The meain components of the frame
editor are discussed 1n the section which follows.

=

s

2.4. Windows and Views

The current KREME frame editor has six views, each
a fixed configuration of windows appearing at once on
the screen Three windows (screen reglons) are common
to all of these views, the global command window, the
editor stack window, and the state window. Figure
2-2 shows the main concept editing view, which contains
most of the windows used for editing portions of a
concept's definmtion The descriptions of each window
below will refer to the numbers superimposed on that
figure.

The global command window (1) contains commands
that operate on the network as & whole. It 1s &always
visible.

The editor stack window (2), which 1s also always
visible, shows the names of the things being edited and
some information about their current edit state (eg,
whether they have been modified). Iltems in the stack
window can be removed from the editor, made the
currently visible edit item, or reclassified (if modified) by
pomnting at them.

The state window (3), which 1s wvisible 1n all views
for concepts and roles, displays the name, textual
description, primitive class flag, parents and information
on the classification state of the item.

The concept graph window (4) displays =&
dynamically updated graph of all of the abstractions and
specializations of the current concept This view
provides constant visual display of the relative position
of the concept bemng edited 1n the subsumption
hierarchy.

The role restrictions window (5) displays a table of
the role restrictions for the current concept Columns
n the table show the source (where 1t was inherited
from) of the restriction. its role name, value and number
restrictions, default value. and a description

This window can also be used to display the
concept’'s 1nverse role restrictions, which are all of the
restrictions that wuse the concept as their value
restriction. This display resembles the role restrictions
display, though some parts of 1t cannot be edited

The role restrictions command window (6) This menu
contains commands for the role restrictions window.
Currently, commands are available to dispiay the locally
defined restrictions, the full inherited set of restrictions,
or the inverse restrictions. In addition, there 1s a
command to delete redundant defined restrictions that
would be inherited anyway.

The Editor Interaction Window (7) 1s a Lisp Listener
which can be scrolled backward and forward through a
history of the current session. This window also is used
for some data entry and messages.

Four other wviews are currently defined for
concepts, and one view 1s defined for roles.

The role editing view (figure 2-3) appears whenever
the Edit Role or New Role commands are 1ssued. It
contains windows showing a graph of the role network
highlighting the currently wvisible role, and another
displaying the concepts that restrict the role. The role
editing view also conteins a role editing commands
window.

The four other concept views mix some of the
windows above with windows for displaying and editing
disjoint classes, role equivalences, and inverse role
restrictions. In addition to the global commands window,
the editor stack and state windows, these views show the
following.

o An enlarged greph window, filling most of the
screen, for viewing large sections of the
concept hierarchy. (No display or commands for
editing role restrictions are provided in this
view)

o Windows for & concept's inverse restrictions,
role restrictions, equivalences and disjoint
classes, but no graph

o Enlarged regions for all concept features, role
restrictions, equivalences and disjoint classes
(but no graph).

L sFrbcHing v Roie
['H!-E-klil'ﬂrll.-l,r‘
FRRBTTL Fags

Ho le: h

Primitive: VES

Differentiates: UALUES

Domain: Defined: FLUID-DEVICE Computed: FLUID-DEVICE
Range: Delined: URLUE Computed: VALVE

Description:

3
\ i LOV-FRECSUFE-CUTEUT-AWITEN

.
FUEL 01 - T &Mk] T~ $180 1 10M- | SOLATIOM- =80 VE

- L
oRcapls sEkrickh Hole

1602 -PORT-DEVICE

Fome

NP N | TH-NOTOR

BRI TIYE-D1TPLACEMENT - PUSF

FJEL=DIL-TEFV|CE-PUNP

1= L F=l | LT =N Ol | - el o

FUEL - L -URLOAD I N0- SUSE I TEN

PUFLE" =T TFaINER

FUEL-00L-] FRTHEF

1 50=THPOTTLE-L M

FUEL-0L + THROTTLE -L INE

Jan-z-Far T -0f vy EOF - w1 TA-GANsED- vl v
SOUPCE =¥] TH-BARGLD- PL0L AT | 0M: VRLYVES
FUEL-A1L - Tank

ACCIm RTOF
FUEL =01 L -aC CUMS, A Tl
I5n-BFaHCEIHO-DEY [CE

(LT T EL BT ION-WALVEL

(U] VALVEE

fUcu) LmEs

fuuy rarte

[U.0] TeEby -l LHEE

U] PORTE

feauy FugL-01L-TERYIGL-PUNF
fr.uY Z-PORT-DEVICE

feou] vaLvE

[CaU] PEESSURE-REGULATING. Vsl E

[Clansified; Unmodified]

AMASAETE ST Y =

Edipor Stk

Figure 2-3: The Role Editing View

Py

iy

o The structure editing windows and the macro
editor displays, described 1n section 4 below

2.5. Operations

The basic operations used to make new concepts or
roles, change existing ones, and delete concepts and
roles from the network are discussed in the sections
which follow

Making new concepts. Clicking on the New Concept
command in the global command menu will cause a menu
of possibilities to pop up. From this pop—-up menu, the
user can choose to make a new concept that 1s similar to
the currently visible concept or to some other concept, a
specialization of the current concept or some other
cencept, or a specialization of several concepts.

When the initial form for the new concept has been
specified the system creates a new concept definition for
1t and shows this new definttion in the main concept
view. The user is then free to add specific details (slots,
equivalences, additional parents, etc.) to the new voncept
definition, classify 1t, or edit other concepts, leaving the
new concept definition on the editor stack to be fimished
and classified later. There are no constraints on the
order of thcse operations. The new concept definition ;s
treated lke any other concept definition 1in an editor
buffer, except that 1t 1s marked as never having been
classified.

Making new roles. The operations for adding new
roles are essentially the same as those for maliing new
concepts.

Adding and modifying slots. Whenever the window
displaying role restrictions 1s visible, as 1n the main
concept view, role restrictions can be added or modified
A new slot 1s added to the defined slots of the concept
with the 4dd Siot command When this command 1s 1ssued,
the system asks for a role name. a value restriction, a
number restriction and a default form. Any of these
items can be entered by typing or by pointing to the
desired name or form if 1t 1s visible If a role or concept
named 1n & role restriction or default does not exist the
system will offer to make one with the name given.

The user may modify any defined slot or any slot
that 1s 1nherited from a parent or created by the
classifier Slots are modified by pointing at the
appropriate subform and then either typmng 1n or
pointing to a replacement form If any portion of an
inherited or classifier created slot is modified, the new
slot definition becomes part of the definition of the
concept heing edited

Modifying parents. The system displays the classifier

determined parents of a concept 1n two places 1n the
main concept view. The concept graph displays them as

part of the abstraction hierarchy of the concept In
addition, the state pane shows both the defined and
direct or computed parents of the concept. The

classifier may have found that the concept specializes
some concepts more specific than the defined parents,
thus defined parents may or may not be direct parents
In the state pane, defined parents that are not direct
parents are preceded by a -, while -classifier
determined parents thal were not defined parents are
preceded by a "+".

Adding new defined parents to a concept's
definition 1s done by clicking on the Add Parent command
and typing a concept name or pomnting to any wisible
concept. The system prohibits users from defining
concepts as parents of concepts which subsume them.
(This would form an abstraction-specialization loop.)

Defined parents may be deleted by clhicking on their
names 1n the hst of parents displayed 1n the state
window A parent can either be deleted or "sphced out”

~8=

Sphicing out a parent both deletes that parent from the
ust of defined abstractions and makes the deleted
parent's parents parents of the current concept. That
1s, it connects the current concept to (some of) 1ts
grandparents. Ccmmands are also available to delete all
defined parents that the classifier has determined are
not direct parents, and to make all classifier -discovered
parents part of the concepts defimition.

Changing names and killing concepts and roles.
KREME allows the user to change the names of concepts
and roles or to delete them completely. Name changing
is accomplished simply by pomnting at the concept or
role’s name 1n the state pane and entering a new name.
Changing the name of a concept or role directly effects
the network, since the name of the concept defimition, as
well as the name of the corresponding classified concept
(if there 1s one), 1s chang=d All pointers to the concept
(as & parent of other concepts, 1n value restrictions, as
the domain or range of roles etc.,) are automatically
updated with the new name both in the classified
network and 1n all editor buffers.

Killing concepts 1s a somewhat complicated
operation, because of the need to reconfigure the
network following the deletion In essence the Kill
command splices a concept out of the taxonomy by
connecting all of its children to all of its parents. Any
concept that used to define the concept as a parent 1s
reclassified. If the concept was used as a value
restriction, the editor tries to find an appropriate parent
to substitute for the killed concepl. Because this attempt
1s not always successful, user interaction 1s sometimes
required

Our current version of Kill 1s only one of several
that might prove useful For example, We plan to provide
a second kill function that deletes the entire lattice
under the killed concept (the concept and all of its
children) and a third kil function that preserves the
properties of the killed concept by either moving them
up to the concepts parents or down to all of its
children.

Adding and deleting equivalences or disjoint classes.
KREME provides commands to add equivalences and
disjoint classes For equivalences, the user enters two
paths whose referents are to be equated, and the system
checks to make sure that both paths are valid (all slots
along the path are defined) and that the referents of the
paths are subsumption related to each other (that 1s, the
restrictions on the referents cf both paths are
consistent). For disjoint classes, the system checks
whether the concept entered can he disjoint from the
current one {(1e., a concept cannot be disjomt from its
parents) To delete an equivalence or disjoint concept
the user merely clicks on its display in the equivalence
or disjoint concept window, respectively.

Deleting redundant slots. Chckmg on the Delete
Redundancies command causes the system to delete any
defined slots whose definitions are Lhe same as the
inherited definitions. This operation alters the definition
of the concept, but not 1its classification or completed
description.

3. Classification in KREME-FRAME
networks

3.1. Background

One of the most time consuming tasks in building
knowledge bases is maintaining internal consistency.
Adding, deleting and modifying slots and parents 1n a
frame taxonomy may affect the subsumption relations
between frames and, perhaps more 1mportant, may alter
the sets of properties inherited by more specific frames.
The possible consequences of a change in one part of a
network grows rapidly as taxonomies get larger.
Consequently, the size and complexity of knowledge bases
is limited by the extent to which automatic means are
provided for consistency checking.

A central feature of the NIKL representation
language 1s a classification algorithm that allows one to
build networks of NIKL concepts that are not only
consistent {(all subsumption links 1n the network are
consistent with the sets of properties enclosed by nodes)
but also, for all practical purposes, complete (all
subsumption links 1n the network that are logically
entalled by the sets of properties enclosed by the nodes
are explicit 1in the network).

Unfortunately the NIKL classifier can only handle
monoctonic changes to a cancept hierarchy. NIKL can
construct a consistent and complete network from a file
of randomly ordered concept definitions and users may
add new concept definitions to existing networks, but
once a concept has been placed 1n a network, it cannot
be modified or deleted, a severe shortcoming for an
ir' "ractive knowledge editor.

In oider to develop a fully interactive knowledge
editing system we had to extend the NIKL classifier so
that it could deduce all of the consequences of any
modification to any part of the intertwined concept,/role
taxonomies, and effect the rcclassification of all
concepts and roles necessary to maintain internal
consistency.

The remainder of this section will give a brief
description of the KREME classifier. For a formal
description of the NIKL classifier algorithm see [14, 15]
For a more complete description of a somewhat simpler
interactive classifier see [1].

3.2. Completion

Completion refers to the basic inheritance
mechanism used by KREME Frames to 1nstall all inherited
features of a concept 1n 1ts internal description. Given a
set of defined parents and a set of defined features, the
completion algorithm determines the full, logically
entalled set of features at a concept (or role).
Completion always occurs before classification or
reclassification of a role or concept.

The completion algorithm 1s broken up i1nto moedular
chunks that correspond to the decomposition of the
frame language. There 1s a distinct component that deals
with role restriction inheritance, another component that
deals with disjeint class 1nneritance, a third that deals
with role equivalence nheritance and so on. This
organization makes 1t quite straightforward to extend the
language with new features that handle inheritance 1n
different ways.

A concept 1nherits all the role restrictions from all
of 1ts direct parents and adds them to the lhst of
restrictions that 1t defines locally. For each role naming
a slot in the combined list, the algorithm creates a single
restriction that conjunctively combines all restrictions
for that role at that concept. The effective value
restriction 1s either the single most specific of all the

value restrictions for that role at the concept, or a
conjunction of several, if no single one is subsumed by
all the others. The effective number restiiction for each
slot 1s similarly determined by intersecting the number
ranges 1n all of that slot's role restrictions.

Complications arise when there 1s more thau one
restriction for a given role 1n the initial hst, none of
which 1s more specialized than all of the others. Figure
3-! 1llustrates one way this can occur, when the most
specific value restriction 1s 1nherited from one parent
(A"'MAL) and the most specific number restriction 1s
ir terited from another parent {4-LIMBED-THING) to form
the restriction of LIMBS at 4-LIMBED-ANIMAL.

Figure 3-2 shows another example of completion in
which the resulting value restriction must logically be
the conjunction of several concepts. Since ANIMAL-
WITH-LEGS 1s an ANIMAL, and a THING-WITH-LEGS all of
its LIMBS must be both ORGANIC-LIMBs and LEGs. If the
concept ORGANIC-LEG, specializing both ORGANIC-LIMB
and LEG, exists when ANIMAL-WITH-LEGS is classified for

organic
limb

Figure 3—1: Inheriting Number and Value Restrictions

the first time, tlie classifier will find 1t and make 1t the
value restriction of the slot LEGS at ANIMAL-WITH-LEGS.
It 1t does not exist, the classifier stops and asks 1if the
user would like to define 1t.

arganic
limb

thing
with legs

Figure 3—-2: Combining Value Restrictions

In general, whenever a value restriction can only
be defined as a conjunction of several concepts, KREME

offers to form a concept representing the_ conjunction,

and asks for a name for the new concept As 1t turns
out, forming the suggested conjunction is not always the
right thing to do. It often indicates & missing

subsumption relationship between the concepts nvolved
KREME provides several options at this pomnt, as
described in section 3.6

3.3. Subsumption checking

The KREME classifier algorithm 1s built around a
modularly constructed test for a valid subsumption
relationship between two objects, based on their
effective, mnherited features. When a definition 1s being
classified, 1t 1s repeatedly compared to other, potentially
related, ohjects 1n the lattice to see whether 1ts
completed defimtion subsumes or 1s subsumed by those
other objects. The subsumption test compares features
of one with features of the other. For Cl to subsume Cc2
In this sense means that the features of Cl form a
proper subset of the features of C2.

KREME partitions the work of this subsumplion
check 1n much the same way it deals with inheritance.
Each feature type (1e role-restriction, disjoint-class
etc) decides whether, with respect to that type, C1
subsumes C2, Cl 1s equvalent to C2, or Cl does not
subsume C2. 1f any of these tests return DOES-NOT-
SUBSUME, the the entire subsumption check falls
immediately. 1f all of the checks return EQUIVALENT or
SUBSUMES, then the subsumption test succeeds as long
as there was one vote for SUBSUMES. The advantage of
this kind of modular orgamzation 1s extensibiity. If a
new feature that contributes to concept subsumption 1§
added to the language one need only define a
subsumption predicate for that feature, and objects
having that feature will be appropriately classified

3.4. The Classifier

The basic classifier algorithm takes a completed
definition (that 1s, a defimtion plus all 1ts effective,
nherited features) and determines that definition’s single
appropriate spot in the lattice of previously classified
definitions. The result of a classification 1s a unique set
of the most specific objects that subsume the defimtion
and a unique set of the most general objecis that are
subsumed by the definition When the classified
definition 1s installed 1n the lattice all the concepts that
subsume 1ts features will be above 1t 1n the lattice and
all the concepts that are subsumed by its features will
be below it.

The detaills of the classifier’'s 1mplementation and
operation are beyond the scope of this paper. It should
be noted that the basic classifier 1s nearly functionally
equivalent to the NIKu classifier. However, NIKI, merges
concepts that are exactly classifier equivalent, while the
KREME classifier does not normally do this. The decision
not to merge concepts in KREME 1s due 1n part to the
different environments 1n which these classifiers are
being used In an editing environment, where definitions
are expected to change, there may be more to a
concept’s defimition than had been stated when 1t was
first defimed In addition, we foresee a time when not all
of a concept's defined properties are classifier sensitive
In such an environment, merging concepts when their
classifier sensilive properties are 1dentical would be a
mistake

3.5. Reclassification of KREME networks

We are now ready to give a brief description of the
mechamsm that KREME uses to propagate modifications o’
a defimtion to related concepts and roles. The KREME
classifier 1s 1nvoked whenever a concept or role 1s

10~

defined or redefined. The classifier first completes the
defimition by gathering all of its inherited features. and
then determines exactly where 1t should be placed in the
lattic=. 1f the object has never been classified before,
the basic classifier algoritim 1s run to find the most
specific parents and children of the completed defimtion,
and nsert the new object into the network.

1f the new defimtion redefines a previously
classified object, the process 1s more comnlex. First, the
previously classified object must be spi'ced out of the
network, and the basic classifier algorithm is run to find
the correct position for the new definition Since
changing the subsumption relationships of an object can
change the positions of objects referring to 1t, the
reclassifier must then find all other objects that must be
reclassified because of the change The system compares
the previously classified object with the redefined object
in order to determine which other objects, dependent on
the old definmtion, might be affected by the change.
These objects must all be reclassified. As one mght
expect, reclassifving those other objects may 1tself cause
further reclassifications to be necessary.

The reclassification algorithm which accomphshes
this resembles the consistency maintenance algorithms
found 1n truth mantenance systems. A queue of objects
waiting for reclassification 1s maintained, called the
pending reclassification gqueue. As each object s
reclassified, all objects that could be affected by the
changes caused by 1ts reclassification are collected and

placed 1n the queue if they weren't there already.7

Although the above algorithm 1s relatively
straightforward 1n outline, its efficiency and correctness
depends on determining exactly those dependent objects
that need reclassification The algorithms efficiency
depends on reclassifving only those objects that require
it (1 e., whose classifier determined position may change)
Its accuracy and completeness depend on reclassify1r.g all
objects which require 1t.

The vpower of reclassification 1 an editing
environment c¢an be 1llustrated with the following
relatively simple example. Suppose a knowledge base
developer had defined both GASOLINE-POWERED-CAR and
INTERNAL- COMBUSTION ~-POWERED-CAR as specializations of
CAR, but had mmadvertantly defined INTERNAL
COMBUSTION-ENGINE as a kind of GASOLINE-ENGINE. In
this situation, the classifier would deduce that
INTERNAL-COMBUSTION - POWERED - CAR must be a
specialization of GASOLINE-POWERED-CAR, as shown 1n
figure 3-3, since the former restricted the role ENGINE
Lo a subclass of the latter's restriction of the same role.

Bihe NIKL clossifier forms such conjunctive concepts
outomoticolly, but does nat give them names.

7Concepts thot depend on each other pose special problems,
but the detoils of how this is hondled ore beyond the scape
of this dacument.

o,

o in1e'na_i 3
t\\ E 3

* - defined parent

byt

Figure 3-3: An Error Affecting Classification

Redefining INTERNAL~COMBUSTION-ENGINE as a kind
of ENGINE, rather than a GASOLINE-ENGINE and
reclassifying causes all of INTERNAL-COMBUSTION-
ENGINE's dependents to also be reclassified, including

INTERNAL-COMBUGSTION - POWERED-CAR Since

GASOLINE

ENGINE no longer subsumes INTERNAL-COMBUSTION-
ENGINE, the restrictions for GASOLINE-POWERED-CAR no
longer subsume those of INTERNAL-COMBUSTION ~

POWERED-CAR, and the classifier therefore
GASOLINE-POWERED-CAR does not subsume

finds that
INTERNAL-

COMBUSTION-POWERED-CAR This 1s shown 1n figure 3-4

Figure 3—4. After Reclassification

3.6. Editor Interactions with the Classifier

The following sections describe several ways 1n

which the frame editor and the classifier
support the knowledge acquisition process.

mteract to

~11-

Defined/Completed feature displays. The frame
editor uses the classifier's completion algorithm in 1its
display and editing of role restrictions (slots), role
equivalences and disjoint classes, and 1n displaying the
set of all concepts using a role in a value restriction (in
the role editing view) When the role restrictions window
1s visible, the user may toggle between a display that
shows the defined role restrictions for the current
concept and a display that shows all the effective role
restrictions at the concept. When all role restrictions
are displaved, the user may modify a restriction that was
inherited or created by the completion algorithm.
Modifying a restriction automatically adds the modified
restriction to the list of defined restrictions at the
concept. Similar mechanisms are avallable for viewing
and modifying role equivalences, disjoint concepts and
concepts restricting a role.

Classification from the editor. One especially useful
feature of the KREME frame editor 1s its ability to
immediately display the effects of classifying a concept
or role defimtion When the user modifies a concept or
role’'s defimtion and classifies 1t, the editor redisplays
the relevant visible windows to show all classifier added
information. For example, the graph of & ccncept will
show the concept's possibly modified place 1n the
taxonomy Links added or deleted by the classifier seem
to appear or disappear instantaneously.

Making new concepts and roles needed by the
classifier. The KREME classifier sometimes needs to form

new concepts 1n order to atisfy some logical
relationship. This occurs primarilly during role
restriction completion, when the effective value

restriction for a slot can only be described as a
conjunction of two defined concepts, rather that a single
concept (See section 32) It also happens occasionally
when a similar coudition arises 1n determining the
effective restriction on the range of a role. These
classifier required conjunctions are sometimes called
CMEETSs.

While forming the appropriate conjunction 1s the
logically correct thing to do to ensure consistency of the
knowledge base as then defined. 1t often turns out that
the conjunction suggested by the classifier 1s needed
because one of the concepts to be conjoined has been
improperly defined. In particular. a CMEET condition
most frequently arises because the concept used as the
value restriction of a role in the concept being classified
1s not subsumed by the restriction for the same role at a
higher concept, and the restriction must logically satisfy
both constraints. This 1s 1llustrated in figure 3-5 The
figure shows 2-PORT-TANK defined as both a TANK and a
2-PORT-DEVICE. Each of those concepts restricts the
role INLET-VALVE. The classifier finds that the
restriction for slot INLET-VALVE at 2-PORT-TANK must be
both a VALVE and a STOP-VALVE, given the restrictions of
that slot at 2-PORT-TANK's parents. Since STOP-VALVE
was not defined as a kind of VALVE, the conjunction 1s
not the single concept STOP-VALVE, and so the classifier
asks 1f 1t should create a new concept, the CMEET of
VALVE and STOP-VALVE

Whenever the KREME classifier requires that a
CMEET be formed, 1t stops and queries the user, explains
the situation and requests a name for the concept to be
formed for the conjunction, and enumerates several
alternative options. If all of the concepts are defined
correctly, and the proposed CMEET correctly describes
the required restriction, the user simply enters a name
for the new concept and classificution continues. 1i the
problem really lies with an existing defimtion, as 1s the
case with VALVE and STOP-VALVE, the user can choose an
alternative course of action, rather than introducing a
useless new concept Most often. the correct action 1s
to alter the subsumption relations between the named
concepts, so that one of them 1s subsumed by the others.

Fhis 1s done simply by naming one of the concepts to be
conjoined instead of giving a new name. In our example,
the user would simply type STOP-VALVE, in response to
the query. The classifier would then make STOP-VALVE a

Figure 3-5: Discovering a missing subsumer.

kind of VALVE and continue classifying 2-PORT-TANK,
resulting in the relations shown in figure 3-6

Add Parent

inlat
valva

_5(

valve
—

Figure 3-8. After interaction with the classifier

This interaction effectively allows a user to correct
an oversight i1n a previously defined concept's defimtion
at the point the error 1s detected by the classifier's
completion algorithm. By making the classifier less
"automatic” 1n this way, we have made 1t more effective
as a consistency maintenance tool, and avolded some of
the problems incumbant in using a classifier with a less
than totally complete and accurate knowledge base.

We are investigating additional ways 1n which the
classifier, as well as other kinds of consistency
maintenance facihties, can be used interactively to aid
the acquisition and refinement of knowledge bases. We
feel this kind of functionality will become increasingly
important as the size of knowledge bases grows

4. Macro Editing of Knowledge
Bases

An 1mportant focus of the first phase of the BBN
Knowledge Acquisition Project that will be continued 1in
phase two 1s an investigation of and development of tools
supporting macro—editing procedures for automatic
modification and enhancement of partially defined
knowledge bases The need for methods of expressing
and packaging conceptually clear reformulations of
concepts and other representations, as well as simlar
facilities for developing new concepts from old ones 1s
clear.

-12-

We are taking two different approaches to this
problem. First, we have develop2d a macro faciity for
reformulations that can be expressed as sequences of
standard, low-level editing operations which allows users
to define editing macros that can be apphed to sets of
concept definitions by giving a single example. Second,
we are building a small hbrary of functions providing
operations that cannot be defined simply as sejuences of
low level editing operations. OQur main purpose is to
collect and categorize these utilities, and explore their
usefulness 1n a working enviroi.ment. Our hope 1s that a
large fraction of these operations can be convenilently
described using the macro facility, as 1t 1s more
accessible to an experimental user commuuty than any
set of 'prepackaged” utilities, and can be more
responsive to the, as yet, largely unknown special needs
of that community

The current state of this research effort 1s
described below. First, we will describe and provide
illustrations of the macro-editing faciity. Then we will
describe an example of the latter class of operations, a
"generalization” utility for drscovering and presenting
potentially useful generalizations of concepts to the
knowledge engineer.

4.1. The Macro and Structure Editor

One of the views availlable when editing concepts 1n
KREME 1s the macro and structure editfor. This view (See
figure 4-1) provides display and editing fecilities for
concept definitions, which 1s based loosely on the kind of
structure editor provided in many LISP environments
The view provides two windows for the display of styhzed
defining forms for concepts. The current edit window
displays the defimtion of the currently edited concept
(the top item on the editor stack). The display window
1s available for the display of any number of other
concepts Any concept which 1s visible 1n either window
can be edited, and features can be copled from one
concept to another by pointing. Both windows are
scrollable to view additional definitions as required.

As n the normal KREME editing views, both
inherited and defined features can be displaved. Clicking
the mouse over the keyword indicating each feature class
In a concept's definition (e.g., Abstractions., Role
Restrictions., Equivalences., etc.) toggles the display of
that component between defined and all inherited
features of that type That 1s, clicking on the Role
Restrictions changes the display of the concept's role
restrictions from locally defined role restrictions to All
Role Restrictions and vice versa

There 1s a menu of commands for displaymg and
editing defimtions that includes the commands Add
Structure, Change Structure, Delete Structure, Display
Concept and Clear Display Arguments (if any) to these
commands may be describted by pointing or typing. Thus,
to delete a role restriction, one simply clicks on Delete
Structure and the display of the restriction to be
deleted Adding a structure 1s done by chcking on Add
Structure, the kcyword of the feature class of the
concept one wishes to add to (e.g., Role Restrictions:)
The new restriction 1itself may be copied from a displaved
concept by pomting, or a new one may be entered from
the keyboard Changing (that 1s, replacing) a structure
can be done either by pointing 1 succession at the
Change Structure command, the item to be replaced, and
the thing to replace 1t with. In most cascs, Change
Structure can also be invoked simply by pointing at the
structure to be replaced, without the menu command

The last two commands 1n the structure view's main
menu provide the means to change what 1s displayed 1n
the display window Pointing at Display Structure and
then at any visible concept name places the defimition of

Load

aved Network
1ve Network
ngssnfy Concept Kil Concept
Concept: FUEL-OIL-CTRCUI!-3-UAY-URLVE
Prinitive: NO
Specializes: 3-UAY-VALUVE
Description: 3 way valve used in fuel o0il circuit

New Concept

LBviaricpe SLruc i
Moy M
Concept FUEL-DIL-CIFCUIT-3-HAY -\ALYE
Primitive: lig
Desceaption: 3 wa value used in fue, oil carcuit
Abiztractians: (2-WAY-YRLVE)
Fale FPestriccions: [Name HF P Default])

CIFLOW-FRTHS E.actlv 2 (A FLUTD-FATHY (A FLUID-FATH)
(IILET E~actle 1 (A FLUID-FOPT) (R FLUTD-FOFT)
COUTLETS E.sct by 2 (A FLUTD-FOFT ¢ o f FLUID- FOFT)
(FUEL-OIL-FETUFN-OUTLET E.actle 1 (H FLLID-FORT)

(H FLUID-FOFT o1
CCONTAMINATED-FLIEL-OUTLET E.acti. § A FLUID=-FOFT
i (R FLUID-FOFT 1)

Gl atenced:

\ CUFLOM-PATHE 2 OUTLETY (COUTAMINATED- FUEL -(ITLET 1)
VOOUTLETS 20 (CONTAMINATED-FUEL-OUTLET 1)
fOFLOM-PATHS 1 DUTLET! (FUEL-DIL-PETUFN-QUTLET)
fEOUTLEYS 19 (FUEL-OTL-FETURHI-QUTLEY '

COOUTLET ¢ VFUEL~DIL-FPETUFH-DUTLET)
Moy M how

New Hole
Edit Role

filew Related Concept

[

Concept FLUID-FOPT

Generatize

Pararneters
Reset

Change View

[t FUEL =D IL-TTRGITT -5 b,
L U] FLUTO-DEVICE

L] BUARD] AN-ALYE

M) HaLVE

[4iU] FLUTO-POFT

L[0] L-FORT-FLOLD-DEVICE
Eid e

[Classified; Unnmodified]

Rt

viear uispiay

Framtine: Ves

flm=cipty Coport for krarefer ol Flund
Hbstracn ¢ CPLRT

Fole Feztricrions

Equivales

Lz goane

ancept Z~POFT- FLUID-DEVICE
Framitioe: YVes
Descraption: davice wivh tuo flurd port s
Azt e tons: OFT-DEVICE FLLUID-DEVICED
Fole Feztractions: (Hame HF UF Datfault]
CCTHLET E-actl’ 1 of FLUID-FOFT @ FLUTD-FURT 1)
VOUTLET E-actlu 1 0A FLUID-FOFT] A FLUID-PORT 130
Equiualances:
Diziovnr L1

Figure 4-1:

The Macre Structure Editor View

that concept 1n the display window Clear Display
removes all i1tems from the display window. Individual
concepts can be deleted from the display window by
pointing at them and clicking The Edit Concept
command 1s used to change what 1s displayed in the
current edit window. Editing a new concept moves the
old edit concept to the bottom of the display window

4.2. Developing Macro Editing Procedures

These operations, together with the globally
avallable commands for defining new concepts and making
specializations of old concepts essentially by copying
their defimitions, provide an extremely flexible
environment 1n which to define and specify modifications
of concepts with respect to other defined concepts.
Virtually all knowledge editing operations can be done by

a sequence of pointing steps using the current edit
window and the display window This style of editing 1s
also used 1n the rule editor (See section 5) This

combination of editing features and mouse—-based editor
interaction style provides an extremely versatile
environment for the description, by example, of a large
class of editing macros.

The remaiming windows in the Macro and Structure
Editor View are used for defining, editing, and running
macros composed of structure editing operations. Macro
operations are defined by editing a concept for which
the macro will make sense, and then invoking the Define
Macro command from a menu Until the macro definition
1s terminated. all editing and concept display operations
performed are recorded as steps 1n the macro Some
basic facihities are also provide! for editing (inserting
and deleting steps, changing refeients) mucros once they
are defrned

If the macros defined 1n tlus fashion are intended
to work on concepts other than those for which they
were defined, the operations recorded cannot refer
directly to the concepts or objects which were being
edited when the macro was defined. Instead, a kind of
mmphcit variablization takes place, to replace the named
objects with their relationship to the imtially edited
object. In most cases, these indirect references can be
thought of as references to the localion of the object 1n
the structure editor's display windows. In fact, each new
object that 1s displayed or edited in the course of

~-13-

defining a macro 1s placed on a stack called the macro
tlems lis{. together with a pointer to the command that
caused the 1tem to be displayed

For exemple. 1f one was editing the concept
ELEPHANT, & command to Display the concept that was
the value restriction of the role LEGS at that concept
would both place ELEPHANT-LEG 1in the display window
and add that concept to the macro 1items lhst.
Thereafter. all editing commands 1ssued that involve
pointing at ELEPHANT-LEG or any part of 1t arc recorded
in the macro as operations on the item i1n the macro item
Irst at the position ELEPHANT-LEG was when the macro
was defined. The utihty of this form of reference can be
made clear with a couple of examples.

4.2.1. Macro Example 1: Adding Pipes

When the STEAMER [20] system was developed. &
structural model of a steam plant was created to
represent each component mn the steam plant as a frame,
with hnks to all functionally related components (e g.
inputs and outputs) represented as slots pointing at
those other objects So, for example, a tank holding
water to be fed into a boller tank through some pipe
that was gated by a valve was represented as a frame

with an OUTPUT slot whose value was a VALVE. The
OUTPUT of that VALVE was a BOILER-TANhK The pipes
through which the water was conveyed were mof
represented since they had no functional value 1n the
simulation model

If 1t became important to model the pipes, say

because they introduced friction or were susceptible to
leaks or explosions, then the representational model that
STEAMER relied on would have required massive revision
Each component object in the system would have needed
editing to replace the objects in 1ts INPUT and OUTPUT
slots with new frames representing pipes that were 1n
turn connected by their OUTPUT slots to the next
component in the system

One of our goals 1n developing the KREME macro
editor was to be able to make such changes, which are
simple to describe but require many tedious editing
operations to accomplish, given the number of concepts
affected. In the example below, we show how a macro 1s
defined that can be applied to all objects 1n & system
with OUTHUT siuls, 1n order to generate and insert PIPEs

load Saved Network
.Save Network
Classify Concept
oncept: PIPEQ
Primitive:
Specializes:
Description:

'

tdit Concept
Kitl Concept

Structurs Change Structure

CSraRt B St

Corcept FIFED
Fraomitive:
Abizeractionz: (PIFE)

HIT Fola Festeactions: (ltame 15 UP Default]
IHFUT € sct 1 U UM TRINIG-WITH-OUTFI 1)
& VHOTHING-UITH-DUTFUT
(RASE Eoact e 1 DA MARET (A MALE Y
CCOLOF-0F E. sct) § 1A COLOPY WA COLOF 10
VETFUT E act b 1 tA THING-WITH-THFLIT
LA THING-HITH-TIHFUT Y

Eaurualences:

Tes

Macre FIFE

Inzert 3 pipe betuesn tus connested deices

1, Mabe & rau concept which specislizes FIFE,
2 Change the IHFUT walue restractaan af atem 1 to tem 4,

New Hole
Edit Role

New Related Concept

Delete Structure

ramed buooqener st 1ng 3 number

Parameter Generalize

Reset
Change View

0 (V.#) FIFED
[} frint) TWo-pUFT-0EVICE
0 [U] Tankl

[Unclassified; Modified]

Clear Disjlay

Concept TAM L
Fromitaive: Mo

Atk actyoemss 1 TAM

Fiule Fastractiorz: [Hame WP UF Dlef satt]
VOCOLOF-OF E osctde 1 LA YELLORE 1A YELLIMY ¢
VORI E seele 1 06 UHLMES T 1A UHLUED 1 1)

Equivslences;

Dvzpownt (Vazresz:

. Map Edit

. TR 1 e Ent o B2p
1 PIFED [operstion 1]

Tuffa .

Macia Trepps

Macro Drepper - [}
Figure 4-2: View vhen defining the PIPE macro
into those slots The macro also sets the QUTPUTs of

those PIPEs to be the concept that was the old value of
the OUTPUT slot in the concept edited.

Jn this example, the macro 1s defined by editing a
simphfied representation of a tank (TANKI1) connected (by
role OUTPUT) to a valve (VALVEZ), as shown in figure 4-2.
The sequence of steps required 1s shown in figure 4-3,
as they appear 1n the Macro Definition window. (The
italic comments 1n parentheses do not appear 1n the
actual window) Each step describes an editing operation
invoked with the appropriate mouse operations. starting
with the old defimition of TANKI1, as showw 11 the Current
Edit /tem window 1n figure 4-2 Figure 4-4 shows the
state of the editor at the end of this defu.ation process

The PIPES macro shown here 1s sufficient to insert
concepts representing pipes between concepts with a
single OUTPUT and the concepts represented as receiving
that output. The macro works as long as the role
OUTPUT, or a specialization of that role, ex.sts at the
affected concepts.

The current KREME macro and structure editor 1s
still a very preliminary version, and there are still a
number of i1ssues to be addressed We are working on the
general problem of extending the macro facihity so that
magcros of this type will work when component objects
have multiple OUTPUT slots, witn different names. What
1s required 1s a way to specify that a .acro should be
applied to all such slots.

4.2.2. Example 2. Changing features into concepts

Our second example 1s of a moure common kind of
restructuring that occurs when developmg frame
knowledge bases In developing frame representations,
the cholce must often be made between giving frames a
slot to denote that the conce}t has some attribute and
doing the same thing by defining 1t as specializing
another concept denoting the set of all objects with that
attribute Neither option is exclusive, but only one way 1s
typically needed for the purposes of a given application.

~14=

Steps in PIPE macro:

Edit TANKI

Chck on Define Macro (Makes Macro Jtem 0 = TANK?)

1 Make a new concept which specializes PIPE
numed by cenerating a number suffix (Creates
PIFEO as atem 1. puts it in the current cdit
item unndour)

Change the INPUT value restriction of item |
(INPUT of PIPEQ) to item 0 (TANKT)

2

3. Change the OUTPUT value restriction of 1tem |
(OUTPUT of PIPEO) to th. QUTPUT value
restriction of 1tem 0 (QUTPUT of TANK1
VALVET).

4 Classify the current edit concept (Defines
PIPEO).

o

Change the OUTPUT value restriction of item O
(QUTPUT of TANK1 was VALVE?1) to item 1
(PIPEO).

6. Classify item 0 (TANK?1)

T Edit
(Create: item 2 -

the QUTPUT value restriction of item 1
VALVET).

8. Change the INPUT value restriction of item 2
(INPUT of VALVE1 = TANK1) to item 1 (PIPEQ)

End Macro PIPE

Figure 4-3: Steps in PIPE Macro

oy

tl‘*

Load Saved Network

New Concelt

Kill Concept

Save Network
Classify Concept
Concept: VALVLZ
Prinitive: NO
Specializes:
Description:

VALVE

Add Structurey Change Structure

Toncept VALYVED

Feimitioe: Ho

Ahrtiractione; TUHALUEY

Fole Fertrictions: [Hame WP UP Tefautlr]
PUIHFLT E st 1 A RPIFFIY oA PIPER
FEALOP-NF E actl 1 7H BLIEY A BLUE
POUTRUT £ acklor 1 FR FUMP (R FUHPS

Equicalencer:

Drepnint Clarcer:

Hun Macro
Ao

Define Macro

c Clarsate the current concept,

EREES

. Lhage the OUTFOT value 1estriction of item [to vtem 1,

New
Edit

New Reiated Concept

Deiete Structure

Roie I’arameters Generalize
Raie Reset

Change View

1
[F. 0] TENETGE (T F
ropiM] Tanky
[F.M] FIFED

{Crassified; Hodified])

pt Ciear Dispiay

Display Conce

Concept TAN]

Frimitioe: o

Hbhztractinps: CFAN

Fole Fest) ticnirs [Mame HFEOUF Dtef 5utt]
CURITRLIT E acktt. 1 tA FLFEGT A FIFER
VEALOF=-0F E ogeb 1 -) tH CYELLOL vA CELLOM 1

Equi slerer:
Drryoant Clsrrer:

-

cicmpt FIPED

Feimybaoa: Ho

Ab:iractaonr: (FIPES

Fole Fartractiors: [Hame 1P 1P [ef3i1r])
VIANTEINT E act e 1 VA WALMED 1A MALUED
PIRFINT E gok b 1 rR TROCT oA TAHINL 10

Equi-alenas;

Diejonint (larzer:

Display Macro

Load Macros Map tdit
0. TAMEL [ureent
1. PIFED [aper staom 1]
»

st}

Edvt the DIRUT walue restiictyian of rtem 1, L MALVED [operation w]
. Charae the THPUT walue restraction of iten © ta vtem 1,
o Choange pramibivensss of atem 1 ro Mo,
Fanyiled & wrataon af macen PIFE
Figure 4—4. View after defining the PIPE macro

Steps 1n COLOR-OBIJECTS macro

Edit RED

Chick on Define Macro
(Makes Macro Iltem 0 = RED).

o

-1

Malke a new concept which specializes UBJECT,
named by adding as prefix 1tem 0's name
(Creates RED—OBJECT as atem 1, puis il in the
current edit item window)

Change the COLOR-OF value restriction of item
1 to item 0 (RED)

Change the primitiveness of item 1 to No

Classify 1item 1. (This finds all coneepls with
COLOR-0OF slots restricted to RED, and makes
them speeializations of RED-0BJECT.)

The remaining steps make these :specialization
hinks defined links, and remove the COLOR-OF
slots completely.

Do on SPECIALIZATIONS of item 1. Add item 1 to
the parents of iteration 1tem. (This makes each
red objeel have defined parent RED-OBJECT.)

Do on SPECIALIZATIONS of item 1 Classify

iteration 1tem.
Change the primitiveness of item 1 to Yes.
Delete the COLOR—-OF restrietion of item |

Do on ALL SPECIALIZATIONS of item 1| Delete the
COLOR-OF restriction of iteration item.

Classify item 1

Quite frequently the choice made early on 1n the
development of a KB proves to be 1nappropriate, and
massive editing 1s required to eonvert the aeccumulated
representation base. A maero faeility of this type will
make these deeisions easier to reverse and, therefore,
less disruptive and eostly n their pragmatic
consequences

We 1llustrate this kind of restructuring operation
with a macro that provides a way of forming a .oneept
RED-OBJECT denoting the set of all objects with the role
restriction COLOR = RED, and then removing those COLOR
slots. Figure 4-5 shows this macro's steps.

This macro uses the classifier to help make some of
the required deductions. First, for a given COLOR, say
RED, 1t defines RED-OBJECT, a non- primitive
speciahization of OBJECT, with COLOR-OF restricted to
RED Classifyimg this concept automatically pla es all
other objects with COLOR-OF restrieted to RED (or

specializations of RED) beneath it 1n the speeialization
hierarchy”, which simphfies the joh of defining the macro
considerably.

The remaining steps 1n the macro remove the
COLOR-OF restriction from RED-OBJECT and all of its
specializations. First, the concepts the classifier found
to specialize RED—OBJECT must be given RED-OBJECT as
one of theiwr defined parents. RED-OBJECT must also be
made primitive before 1t 1s reclassified, since 1t no longer
has any defined features to distinguish 1t from OBIECT

The steps required to add defined parents
specializations of RED-OBJECT and to remove their
COLOR-OF restrictions make use of the KREME MAP-EDIT
command This command 1s used to perform a single
editing operation on & set of concepts related to the one

Figure 4-5; Changing RED to RED-OBJECT

-] 5=

8RIED—OBJIECT must be marked non—primitive, since it is fully
defined by the feoture that distinguishes it from OBJECT, its
restriction of the COLOR-OF sliot tc RED. 1f morked primitive,
it would anly subsume concepts thot defined it as one of
their parents.

being edited (e.g.. direct speciahizations, all
specializations, abstractions, all abstractions}). The
limited iteration mecheanism provided by MAP-EDIT has

proven useful 1n several macros, and at present we have
not found the need to extend the macro language with
further control mechanisms

4.2.3. Future Directions

Work on macro editing has really just Dbegun.
However, 1t already shows promise as a method for
acconplishing a number of large scale restructurings of
knowledge bases which are relatively simple to describe,
but tedious to perform. ts example 2 above shows,
macros can alsu make use of the classifier to discover
relationships in the knowledge base and exploit them.

At present, the macro editor is only available foi
editing concepts 1n the KREME frame language. As the
PIPEs example shows, there are still Iimitations on 1its
capabilities, even there We are continuing to develop the
abihties of the macro editor. and 1n future will have
version. ‘1at can be used with the other representation
language. .hat KREME can mampulate. As 1t stands, the
system 1s alreadv powerful enough to describe a number

of transformations between semantically equvalent
though functionally and syntactically distinct
representations. We are bullding a hbrary of these

operations so that other users of KREME will not be

required to reinvent them.

We see our investigation of macro editing as only
the first step 1 developing a knowledge reformulation
facihty that will have and make wuse of more
understanding of the logical structure of the represented
knowledge as well as providing a basic means of
describing procedures to manipulate the syntactic
structure of knowledge representations. During the
second phase of this project, we will be attempting to
generalize the functionahty provided by this hbrary 1n a
system thal 1s capable of reasoning about the kinds of
structural changes the macro editor can perform

4.3. The Generalizer

One of the tasks faced by .nowledge engineers 1n
developing robust computerized knowledge bases s
getting experts to express their often unconscious
generalizations about their domains of expertise. While
much of the detailled information about particular
problems can be accessed and represented by looking at
specific examples and problems, the expert's abstract
classification of problem types and the abstract features
he uses to recognize those problem types are less readily
avallahle.

Experienced knowledge engineers are often able to
discover and define wuseful generahzations that help
organize the knowledge described by a human domain
expert. The expert, although not previously aware of
such a generalization, will often immediately perceive its

relevance to and existence within his own reasoning
processes, gomng so far as to suggest 1mprovements,
related generalizations, more ahstract generalzations

and so forth.

An automatic facihity for deducing potentially useful
generalizations from a network of relatively specific
concepts would be an extremely useful capability for a
Lknowledge editing system to provide An overrniding
difficulty 1n building such an engine is the difficulty of
estatishing criteria for determiming what constituies an
“Interesting” or useful generalization

As an initial expermment 1n automatic generahization
within frame taxonomies, KREME provides a relatively
simple generalizer algorithm that deals with this
difficulty by relying on the user to select from & set of
potential generahzations discovered essentially by

~16~

exhaustive search. Potentially useful generahzations are
found by searching for sets of concept features
(primarily role restrictions) that are shared by several
unrelated ccncepts Finding concepts with a given set of

features 1s relatively easy since KREME indexes all
cnncepts under each of 1ts features.
When the generalizer finds a set of at least k

features shared by at least m concepts, where kK and m
are user selable parameters, the system forms the most
specific concept defimtion that would enclose all of the

features but would still be more general than any
concept in the set. This concept definition 1s displayed
to the user. For example, figure 4-6 shows three

concepts that are all ANIMALs and independently define
the slot WINGS. Given this, the generalizer would suggest
forming a specialization of ANIMAL with the slot WINGS
that these concepts would all speciahze. 1f the user
wanted to introduce this concept, he would respond by
naming the new generalization, which 1s then classified
and 1nserted 1nto the network The features that are
enclosed by this new, more general concept, are removed
automatically from each of the more specific concepts
being generalized Figure 4-7 shows the result with a
new concept named FLYING—-ANIMAL.

As one might 1magine, the generalizer algorithm is
fairly slow (taking about 8 minutes to go through a
network of 500 concep.s and 300 roles). 1t must look at
a fair percentage of all the possible combinations of
features 1n the network. Consequently, we have designed
the algorithm to run in a low priority background
process, looking for generahzations only when the editor
1s waiting for mnput from the user

As vet, the effectiveness of this generalizer remains
substantially untested. We have used tried 1t on the two
reasonably large taxonomies that we have available, and
it finds several potential generalizations in each, but the
real test must weit until there are new applications
under development using the KREME environment. The
taxonomies that we have avallable currently have been
carefully developed over long periods of time, and have

mamma!

insect

Figure 4-6. Find a Generahzation

5. Editing Rules in the KREME
Environment

We are 1n the process of 1ncorporating into the
KREME environment an editor for rules wrilten 1n the
FLEX rule language [16] FLEX 1s similar to the rule—
based portion of the LOOPS language and currently runs
on a Symbolics 3600. FLEX provides rule packets, and
rule objects Rule packets provide a wav to organize
rules. Rule packets can be invoked hke functions, with
arguments and local variables, and return values via the
ZETALISP multiple-values mechanism Flex mcorporates a
mechamsm for dealing with uncertainty, based on that in
EMYCIN [18] The system also provides an elementary
history ard tracing mechanism, and an explanation
system that produces pseudo—English explanations from
rule traces.

The forward chaining rule packets come 1n four
varieties, indicating the type of control mechanism used
for rule firing.

Figure 4-7. After Generalization Added

few remaining "holes'.

We are also considering developing another version o do-1-rule—packets execute the first rule
of this generalizer that would attempt to find new whose test succeeds
concepts 1n sets of conditions repeatedly appearing as
parts of rules. Introducing such concepts could o do-all-rule—packets execute all rules whose
concelvably simphfy, and reveal more of the structure of tests succeed

the reasoning involved in rule sets. It might also make
extending such rule sets easier. A generalizer of this
type will be investigated during phase two of the project

RULE EDITOR

Packet (FOSS :VLRIFY-0K) rquments: (none) Returns: » lype: Do 1 Rule Packet «
corecBlege-n--
=+ If [BRRUD RLIGNNENT-STRTUS) is RLIGNED then STATUS « RLICMED.
If [ALPHA-SUPPLY-LINE RLIGNMENT-STRTUS] is NDT-ALIGNED then STATUS « PARTIRLLY-ALICNED.
If [BRAVO RLIGNNENT-STATUS) is NDT-ALIGNED then STATUS « PARTIALLY-ALIGNED.
4
'1 Mark before Add Delete Find Show Property Access environrnent Compile Run
i Mark after Copy Rernermber Describe Add Property Reset Save History
Advance mnark Move Recaht Not Modified Edit Property Verify References Detete
Hew reference element:, ALTGHMENT-STATL
The viame, ALTZHMENT-STHTUS, does ot ream to be
Flesre chooze 3 defined riole,
Fode of FUEL-UTL-LEFVICE-SVSTEM-CIFOUTT : fihe pas =l Goe s elvE BOILER SUFPFLY cUNE Taklt CSONT oW = TEC - 0IL- T alb RE TOFRK-CF.- 0]
> FETURII-LIME 3000 SRR E RECIFC -
£ ir [J
* M — N
<o Rols FOST-wERIF, - -PACIET-)
it:
Alicnmsnt Status of Alpha Supgl . Lins 1 Mot aligned
4 Then:
Status is given Pactially Alianed
% Rule FOST-VERIF =00 -FAr) ET-C
It:
Alianrassat Statuz of Bracan 1z TRt afione:
Than:
Thatus iz givsn Pactiatly 8ligned
) interse thon Window Alvre Mbw
8 R 551 VO R o -0 LU St U 2 Y S SO T T
1 Figure 5—1: The FLEX Rule Editor

-17-

-

-

o while-1~rule—packets repeatedly test all rules,
firing one, until no tests succeed.

o while~all-rule-packets repcatedly fires all
rules whose tests succeed, until none succeed

An important feature of FLEX 1s the capability to
compile rules nto a lower level language, and run
without the rule interpreter present For example,
forward chamming rule packets can now be compiled
directly into LISP functions. This compiing can be
handled by a separate code generator or translator
which can produce code for other languages

Rule packets in FLEX can be connected to KREME
frame systems or other data contexts by specifymg an
access environment An access environment 1s an object
that receives messages dealing with the accessing of
velues for references 1n the rules. It hardles all
messages to get or set the values of variables and their
confidences. Flex uses the notion of paths These are
composed references. Flex sends the access environment
messages to resolve paths that 1t encounters 1n rules.
When connected to KREME frame hierarchies, these paths
describe role or slot chains, as 1n role equivalences.

5.1. The FLEX Rule Editor
The original FLEX rule editor, shown i figure 5-1,
was a predecessor of the KREME structure editor, in

terms of 1ts functionality and styvle of mnteraction Thus,
its functionahity closelv resembles that for the frame

editor described above One defines and edits rules by
specifying and filing out portions of rule templates. The
user refines these templates either by using the mouse
to copy parts of existing rules or by pointing at slots to
be filled and typing 1n the desired values. Once & rule-
set has been developed. the FLEX editor provides
commands to run packets and debug them It can also
generate traces or rule histories paraphrased 1n pseudo-
Enghsh Mechanmisms are also provided for deleting and
reordering rules, and loading and saving them from files

5.2. Interactions with the Frame editor

Although FLEX was or:ginally desigrned as a stand-
alone system, packages of rules can now be written that
refer tc instances of KREME Frames using the KREME
Frames- ACCESS-ENVIRONMENT This access environment
provides the interface functions necessary for FLEX rules
to refer to KREME frame instances, and their slots It
also allows one to write rule packets that serve as
methods on frames.

The KREME uccess environment allows the FLEX rule
editor to validate references (paths) to slots in KREME
frames when building and debugging rules When an
unresolvable reference 1s encountered, the 1nvabhd
portion of the path 1s pinpointed and a menu of pos (bl
actions to fix 1t 1s offered to the user. The options at
this point include switching to a KREME view 1n which the
suspect concept or role can be edited, defining new
concepts, changing the invahd path element, and
cluunging the root element of the path.

We are still in the process of integrating this rule
iystem 1nto the KREME world. In the near future, it will
also be possible to associate rule packets with concepts,
and browse or edit those packets from within the KREME
editing environment.

-18-

6. Editing Procedures in the
KREME Environment

6.1. The KREME Procedure language

6.1.1. Background

An obvious weakness of many knowledge
representation languages 1s their 1nability to handle
declaratively expressed knowledge about procedures as
partially ordered sequences of actions, particularly f
that knowledge 1s represented at multiple levels of
abstraction Although a number of systems have been
developed that do various forms of plannming,
[4. 12, 13, 17], most have not encoded their plans 1n an
entirely declarative or inspectable fashion Certainly the
current generation of expert system tools does not
provide for the description of this kind of knowledge
Although 1t 1s clear that much of an expert's knowledge
about a domain 1s about procedures and their
apphcation, little work has been done on devising ways
to capture that information directly

The STFAMER project began to address the issue of
declarative representations for procedures in the course
of developing a mechanism to teach valhid steam plant
operating procedures. The representation system
developed for this task had to be directly accessible to
the students who were the system's users, and i1t had to
serve as a source of explanations when errors were
made STEAMER was able to describe these procedures,
decompose them, show how they were related to similar
procedures and, in general, deal with them at the
"knowledge level” [10] rather than as pieces of programs
or rule sets. Although the syntax of the language was
quite primitive, with no provisions for branching or
iteration, the mechanisms for procedural abstraction,
specialization and path or reference reformulation that
formed the heart of the language seemed to form the
kernel of an extremely useful representational facility.

The STEAMER procedure language was well
mtegrated with the MSG frame language that was one of
the starting points for KREME Frames, and minimal effort
was necessarv to incorporate a very similar language
into KREME We refer to the results of this effort as
KREME Procedures We expect to expand the KREME
Procedures language. and provide much improved editing
facihties for procedures in the near future.

6.1.2. Basic syntax

A proccdurc consists of a its name, 1ts description,
the action that the procedure 1s meant to accomplish. a
list of steps., and a lLst of ordcring constraints that
determine the partial ordering of the steps. Procedures
are attached to specific frames (concepts)

A stcp consists of an action and a path. The path
(as 1n role equivalences) refers to a particular concept
which 1s seid to be the object of the step For example,
a concept called SUCTION-LINE might have a slot for a
pert named PUMP. which 1s restricted to being a
CENTRIFUGAL- PUMP We might define a procedure for
ALIGNmmg the SUCTION-LINE which would have & step to
OPEN the DISCHARGE-VALVE of the PUMP This would be
expressed 1n step form as OPEN . PUMP DISCHARGE
VALVE - and would ndicate a step that opened the
discharge valve of the centrifugal pump wlhichh was the
pump of the suction hne.

A constraint 1s an ordering between two steps (the
before step and the after step) Each constraint 1s
supported by a principle. A principle consists of its
name, & description of 1ts rationale and & numeric
priority.

Each step 1n a procedure may either be a primitive
action or another procedure. If the object of a step
defines a procedure for the action of that step then this
procedure 1s sald to be & sub-procedure of the
enclosing procedure. Using our example from above, the
ALIGN procedure attached to the concept SUCTION-LINE
could have & step ALIGN PUMP:>. If the concept
CENTRIFUGAL-PUMP, which 1s the object of this step In
ALIGN<SUCTION-LINE>, defined a procedure for the action
ALIGN, then the step ALIGN <PUMP> could be expanded
into the steps of the procedure for aligning & centrifugal

pump.

6.1.3. Procedural abstraction and structure mapping

For knowledge acquisition purposes, 1t would be
very useful if procecures were represented 1n an
abstraction hierarchy hke that for concepts. In a strong
sense, saying that one abstract procedure subsumes
another seems infeasible. However much power can be
gained 1f abstract procedures form templates upon which
more specific procedures can be built, much as was done
in NOAH [13] For example, if you have some i1dea sbout
how to grow plants in general, and you want to grow
tomatoes, you will use vour knowledge about growing
plants 1n general as a starting point for learning about
growing tomatoes The final procedure for growing
tomatoes will include some (presumably more detailed)
versions of steps in the more general procedure, and may
also 1nclude steps that are analogous to those used in
growing other plants for which more detailed knowledge

exists.? KREME Procedures has a mechanism for building
templates of new procedures out of abstract procedures
When a new procedure 1s being defined at a concept, the
procedural abstraction function determines whether any
of that concept's parents have a procedure for
accomplishing the same action. If one or more do, the

O ¢ O F O ep
Save o dit Concept
Concept: FUEL-OIL-SERVICE-PUNP)
Prinitive: MD
Specializes: PUNP-UITH-MOTOR POSITIVE-DISPLACEMENT-PUNP
Description: fuel o0il service punp

At ron Procedure rsme —Z-.er'-‘r et ton ;:t--atu:

new procedure orgamzes the steps and their ordering
constraints, with suitably reconstructed paths. to form a
template on which the new procedure can be built As
yet this facility does not have the ability to do detailed
reasoning with constraints on steps. as NOAH does. We
expect to greatly expand this capability during phase two
of the project

6.2. The Procedure Editor

When procedures are attached to particular
concepts, a procedure editing view 1s one of the views
avallable for that concept. In this wview, the editor
displays a list of all of the existing KREME Procedures
for the current concept (See figure 6-1.) When the
procedures view 1s visible, the user can choose to delete
any existing procedure, edit a procedure or create a new

procedure Several procedures can be edited
simultaneously. with the topmost procedure 1n the
procedure list window being the current, visible

procedure

The current procedure (of the current concept) has
its steps and ordering constraints displayed. Steps and
constraints can be added to or deleted from the current
procedure Editing of the current procedure can be
interrupted by the user choosing another procedure to
edit, switching wviews for the controlling concept or
Interrupting the edit of the controlling concept.

When the user i1s satisfied with the definition of a
procedure he has edited, 1t 1s ready to be inserted into
the knowledge base. The Define Procedure command
accomplishes this by first ordering the procedure's steps
based on their ordering constramnts. If the constraints
are contradictory, the user must resolve the
contradiction by eliminating constraints or by making
some constraints higher priority than others. Next, a

[Classified; Unmodified]

LUE

L por gk

JEETA N T AR DN

AL LEN ALIBH-FOIP altgn a fued 01l e 1ce pomp [Har ™ Edaraor]

I align the zuction valve.
2oomdige the dow peizure cutout cutout waxle

Qpen the ool watue,

Srat A Foeld o3l e ace pomp [In Egitar; Mool 1ed)

A must come hetare step 7
3 must come before step 4

(] IIII-JTFITILLE[I FLI Lozt come hetore step 5

d Deprez: the moter o griated stact wgatoh ¢ CONTROLLED-FLD ;1ep 1 tocome beEtore step O
SWaat urt il motor §a OPEFATING By EOL 4. muzt come betore step & |
B Feleaze the motar dezignated stat zntl By BOZT step 5 muzt come Letore step f
TRty tuel o1l service puop discharge prsiae ecceeds 350F]
Figure 6—1: The Procedure Editor

~19~

Irar a detailec discussion of reloted issues see Corbanell
[3]} an derivotianal analogical planning.

_a

procedure object 1s made and assoclated with the
classified version of the concept 1n the knowledge base
The procedure may also be compiled 1nto a flavor method
that becomes part of the behavior associated with the
concept. After a procedure has been installed, the
procedure editor redisplays the procedure steps, showing
them in their proper partial order.

Clicking on a step that 1s 1itself a procedure causes
the editor to replace the step with the steps of that
procedure, adjusting the paths of the expanded steps
and adding appropriate constraints so that the expansion
falls logically between the steps surrounding its
unexpanded form in the original procedure

A step expansion can be closed by chicking on any
of the expanded steps The editor simply replaces the
expanded set of steps with the original step and adjusts
constraints accordingly Expanded steps are made
permanent when the Define Procedure command 1s
invoked

A new procedure 1s entered by typing the
procedure name, description and action. The procedure
editor checks to see f any of the parents of the
controlling concept have procedures for the same action.
If so. an mtial procedure template 1s built by combimng
the steps and con:traints of all the 1nherited, more
abstract procedures. The paths of the steps are
adjusted to use “local” slot names. as much as possible,
using the concept's role equivalences as described 1n
section 6 The procedure definition object thus formed
1s then displaved for editing

The KREME Procedures language 1s currentlv being
refined for wuse 1n a new training system under
development at BBN That system will teach diagnostic
procedures for the maintenance of a large electronics
system We expect that KREME wili greatly ease the
knowledge acquisition problems faced by the developers
of that system. It will also provide the first serious test
of the effectiveness of the KREME acquisition environment
In general

7. Conclusion

The goal of the BBN Labs Knowledge Acquisition
Project 1s to buid a versatile experimental computer
environment for developing the large knowledge bases
which future expert systems will require We are
pursuing this goal along two complementary paths. First,
we have constructed a flexible, extensible, Knowledge
Representation, Editing and Modehng Environment 1n
which different kinds of representations (imtially frames,
rules, and procedures) can be used, and we can
Investigate the acqusition strategies for a variety of
types of knowledge representations In building and
equipping this “sendbox”., we are adapting and
experimenting with techniques which we think will make
editing, browsing, and consistency checking for each
style of representation easier and more efficient. so that
knowledge engineers and subject matter experts can work
together to build with significantly larger and more
detalled knowledge bases than are presently practical

-20—

Now that we are well along in constructing a first,
experimental version of the editing environment, we are
beginming to address the second aspect of our research
ptan, the development of more automatic tools for
knowledge base reformulation and extension. An
mmportant part of this endeavor 1s the discovery,
categorization and use of expheit knowledge about
knowledge representations, methods for viewing different
knowledge representations, techniques for describing
knowledge base transformations and extrapolations,
techniques for finding and suggesting useful
general zations 1n developing knowledge bases, semi—
automatic procedures for of eliciting knowledge from
experts, and extensions of consistency checking
techniques to provide a mechanism for generating
candidate expansions of a knowledge base.

Our ultimate goal 1s to explore a number of
approaches to knowledge acquisition and knowledge
editing that could be incorporated into existing and
future development environments, not to develop the
definitive knowledge editing environment. Al s still a
young field, and new knowledge representation techniques
will continue to be developed for the foreseeable future.
We are attempting to provide a laboratory for
experimenting with new representation techniques and
new tools for developing knowledge bases. If we are
successful. many of the techniques developed 1n our
laboratory will be adopted by the comprehensive
knowledge acquisition and knowledge representation
systems required to support the development and
mamntenance of Al systems in the future.

ACKNOWLEDGEMENTS We would like to thank the
other members of the BBN Labs Knowledge Acquisition
Project Richard Shapiro and Albert Boulanger. Rich and
Albert jointly develnped the FLEX rule system and editor,
and Rich was also largely responsible for the
Implementation of the Macro and Structure Editor. Dr
Ed Walker read and substantially edited several draf s of
this paper.

Py

o -VISNC— (i

(]

(3]

[4]

(5]

(6]

(9]

[10]

[11]

[12]

. P R

References

Balzac, Stephen R

A System for the Interactive (lassification of
Knowledge.

Technical Report M'S. Thesis, MI.T. Dept of EE.
and C 5., 1986.

Brachman R.J . Fikes, RE., and Levesque, H

krypton A Functional Approach to Knowledge
Representation

IEEE Computer. Special Issue on Rnowledge
Representation . October, 1983.

Carbonell, Jaime G

Derivational Analogy A theory of reconstructive
problem solving and expertise acquisition.

In Michalski, R. S., Carbonell, J. G and Mitchell,
T. M. (editor), Machine Learning. Volume Il
pages 371-392 Morgan Kaufmann Publishers,
Inc., Los Altos, CA, 1986.

Ernst. G W and Newell, A

GPS. A Case Study in Generality and Problem
Solving

Academic Press, New York, 1969

IntethCorp.
KEE Software Development System
IntelliCorp, 1984.

Keene, Sonya E. and Moon, David.

Flavors. Otject-oriented Programming on Symbolics
Computers

Symbolics, Inc

1985

Carnegie Group, Inc
AnowledgeCraft
Carnegie Group, Inc., 1385

McAllester, D A

Reasoning Utihty Package User's Monuol.

Technical Report Al Memo 667, MIT. Al
Laboratory, April, 1983

Moser, Margaret.

An Quverview of NIKL.

Technical Report Section of BBN Report No. 5421,
Bolt Beranek and Newman lnc., 1983

Newell, A.
The knowledge level
Al Magazine 2(2).1-20, 1981.

Rich, C.

Kknowledge Representation Languages and Predicate
Calculus. How to Have Your Cake and Eat It
Too.

In Proe. A4Al, pages 192-196 1982.

Sacerdot1, E E.
Planning 1n a Hierarchy of Abstraction Spaces
Artificial Intelligence 5(2).115-1356, 1974

[13]

[14]

[15]

{16]

[17]

[18]

[19]

[20]

Sacerdot1, Earl D

A structure for plans and behavior.

Technical Keport 109. SKI Artificial Intelligence
Center, 1975

Schmolze, J and Israel. D

KL-ONE. Semantics wnd Clussification.

In Research in Anowlege Representation for
Natural Language Understanding, dnnual
Report. 1 September 1382 to 31 dugust
1983 .BBN Report No. 5421, 1983.

Schmolze, J.G., Lipkis, T.A

Classification 1in the KL -ONF Knowledge
Representation System.

In Proe. 8th 1JCAl 1983

Shapiro, Richard.
FLEX A4 Tool for Rule—based Programming
Technical Report 5643, BBN Labs, 1984

Stefik, Mark
Planning with Constraints. MOLGEN
Artificial Intelligence 16(2).111-169, 1981.

van Melle, W

A domain independent production-rule system for
consultation programs.

In Proecedings of IJCAI-6, pages 923-925. August
1979

Vilain, Marc.

The Restricted Language Architecture of a Hybrid
Representation System

In Proceedings, 1JC4]1-85, pages 547-551
International Joint Conferences on Artificial
Intelhgence, Inc , August, 1985

Wilhams, M, Hollan, J, and Stevens, A

An Overview of STEAMER. An Advanced Computer-—
Assisted Instruction System for Propulsion
Engineering.

Behavitr Fesearch Methods and Instrumentation
14.85-90, 1981

Experimental Knowledge
Systems Laboratory
Progress Report on Reasoning
Under Uncertainty

University of Massachusetts
Ambherst, Mass, 01003

1. Introduction

This paper describes four projects to develop tech-
niques for reasoning under uncertainty in knowledge
systems. The work is based on the premise that knowl-
edge about sources of uncertainty and evidence should
be represented explicitly, so that knowledge systems can
reason about their uncertainty. This position raises
many questions: How should knowledge about uncer-
tainty be represented? what aspects of uncertain sit-
uations should be explicit? How should evidence be
combined? How can a system minimize its uncertainty?
How are decisions taken under uncertainty? These and
other questions are the foci of the four research efforts
described here. One project has resulted in an archi-
tecture for planning medical consultations, that is, de-
termining appropriate questions, tests, and treatments
given previous results during the consultation. The goal
of the project is to integrate current research on explicit,
sophisticated control with explicit reasoning about un-
certainty: the causes of uncertainty and characteristics
of evidence effect control decisions. A second project
shares this concern for control: we have developed a
general method for constructing decisions under uncer-
tainty. By classifying decision-making situations, one
can “read off” actions that will transform uncertain de-
cisions into more tractable ones. This opens the pos-
sibility of sophisticated control by table lookup. The
third and fourth projects focus on the representation of
uncertainty. One proposes a model for reasoning about
the uncertainty inherent in semantic matching prob-
lems. The other extends this work to a view of com-
mon sense inference as “generalized syllogisms” over an
associative knowledge base.

This report is taken from three recent papers: “Man-
aging Uncertainty in Medicine” by Paul Cohen, David
Day, Jeff Delisio, Mike Greenberg, Rick Kjeldsen, and
Paul Berman, M.D.; “A Typology for Constructing De-
cisions” by Adele Howe and Paul Colien; “Classification
by Semantic Matching” by Paul Cohen, Philip Stan-
liope, and Rick Kjeldsen. The section on plausible iu-
ference was written by Paul Colhen and David Lewis.

-2 D=

2. Management of Urcertainty in

Medicine

2.1 Introduction

MUM is a knowledge-based consultation system de-
signed to manage the uncertainty inherent in medical
diagnosis (the acronym stands for Management of Un-
certainty in Medicine). Managing uncertainty means
planning actions to minimize uncertainty or its conse-
quences. Thus it is a control problem - an issue for the
component of a knowledge system that decides how to
proceed from an uncertain state of a problem. Uncer-
tainty can be managed by many strategies, depending
on the kind of problem one s trying to solve. These may
include asking for evidence, hedging one’s bets, deciding
arbitrarily and backtracking on failure, diversification
or risk-sharing, and worst-case analysis. The facility
with which a consultation system such as MUM man-
ages uncertainty is evident in the questions it asks: it
should ask all nhecessary questions, no unnecessary ques-
tions, and it should ask its questions in the right order.
These conditions, especially the last one, preclude uni-
form and inflexible control strategies. They prompted
the development of the MUM architecture in which con-
trol decisions are taken by reasoning about features of
evidence and sources of uncertainty.

2.2 The Goals of MUM

MUM diagnoses chest pain and abdominal pain. This
includes taking a history, asking for physical findings,
ordering tests, and prescribing trial therapy. Physi-
cians call a diagnostic sequence of questions and tests a
workup. MUM’s primary goal is to generate workups for
chest and abdominal diseases tliat include, in the cor-
rect order, all necessary questions and tests and none
that are superfluous. Since we built MUM to study the
management of uncertainty, the goal of correct, diagnosis
is secondary to generating the correct workup. We were

i S

influenced by a distinction physicians make between ret-
rospective diagnosis, in which all evidence is known in
advance and the goal is to make a correct diagnosis, and
prospective diagnosis, which emphasizes the workup and
proper management of the patient, even under uncer-
tainty about his or her condition. MUM is definitely
prospective. Figure 1 illustrates part of the workup for
coronary artery disease. Clearly, we could build a sys-
tem that follows this and other stored workups, but the
point of the research is to be able to reason about the
features of evidence, and the uncertainty in partially-
developed diagnoses, to decide which questions to ask
next. If MUM does this properly then its questioning
will correspond with a standard workup, or at least be
a reasonable alternative workup.

2.2.1 Managing Uncertainty and Control

MUM is based on the idea that managing uncer-
tainty and controlling a complex knowledge system are
manifestations of a single task, namely, acquiring evi-
dence and using it 1o solve problems. Tliere would be
little basis for variation in problem-solving strategies if
all evidence was equally costly, reliable, available, and
pertinent; but if available and attainable evidence is
differentiated along these and other dimensions, then
problem-solving can be guided by the ideal of maxi-
mmum evidence for minimum cost. For example, here is
a strategy for focusing attention on available evidence:

CONTEXT: to minimize cost

CONDITIONS: test; and test, are pertinent, and

test) is potentially-confirniing, and
testy is potentially-supporting, and

cost(test;) >> cost(testy)

ACTIONS: begin
do test,
if supporting then do test,
else do not do test,
end

That is, given cheap, weak evidence and expensive,
strong evidence, get the weak evidence first and don’t
incur the cost of the strong evidence unless the weak
evidence lends support. The rule serves to manage the
uncertainty associated with the weak evidence - it says
seek strong corroboration only if the weak evidence is
positive. It also uses features of evidence such as cost
and reliability to control the acquisition of evidence;
for example, it explains why an angiogram (an expen-
sive, risky, and excruciating test) is done only after a
stress test in Figure 1. We distinguish these functions

-23-

- managing uncertainty and control — only because un-
certainty and control have, with a few exceptions noted
below, been viewed as different topics. In fact, if con-
trol decisions are based on features of evidence, then
control and managing uncertainty are the same thing.
This is the principle that mnotivates the design of MUM
discussed in Section 2.3.3.

2.2.2 Related Work

The close association between control and manag-
ing uncertainty has been apparent in the literature on
sophisticated control for several years ! but is largely
absent from the Al literature on reasoning under un-
certainty. Three important results have emerged from
research on control: First, complex and uncertain prob-
lems must be solved opportunistically and asynchronouslt
~ working on subproblems in an order dictated by the
availability and quality of evidence (Haves-Roth and
Lesser, 1977). Second, since control tends to be accom-
plished by local decisions about focus of attention, the
behavior of complex knowledge systems sometimes lacks
global coherence. Coherence can be achieved by plan-
ning sequences of actions instead of selecting individual
actions by local criteria’. Third, programs are impossi-
ble to understand if the factors that affect control deci-
sions are tmplicit. For example, the focus of attention
in Hearsay-1I was difficult to follow because it depended
on many numerical parameters calculated from data and
combined by empirical functions with “tuning” parame-
ters (Hayes-Roth and Lesser, 1977). A better approach
is to explicitly state and reason about the implicit fac-
tors, called control parameters (Wesley, 1983), that the
numbers represent (Davis, 1985; Clancey, 1983). If the
control parameters are features of evidence and uncer-
tainty, then control strategies can be developed to man-
age uucertainty.

This last point colors our reading of the Al literature
on reasoning under uncertainty. Much of it is concerned
with the mathematics of combining evidence, the calcu-
lation of degrees of belief in hypotheses. (A represen-
tative sample includes Shortliffe and Buchanan, 1975;
Duda, Hart, and Nilsson, 1976; Zadeh, 1975; Shafer,
1976. See Cohen and Gruber, 1985; and Bonissone,
1985, for literature reviews, including nonnumeric ap-
proaches to uncertainty; and Szolovits and Pauker, 1978
for a discussion of uncertainty in medicine.) Degrees of
belief can serve as control parameters, but it is neces-
sary to maintain a distinction between combining ev-
idence and control. Otherwise, degrees of belief {and

'For example, the classic paper by Erman, Hayes-Roth, Lesser,
and Reddy (1980) is called “The Hearsay-1I speech understanding
system: lutegrating knowledge to resolve nncertainty.”

ZPersonal communication, Victor Lesser.

ol

e e S RN o

ey st gy ot

P s g

B loem it es Workup for Angina

oronary : NOTE - Tx refers to non-surgical treatment
History)

[—"

fra - 1 lek HICT A T8
] Faia i CHR i . | EXIT lonaxt bkl
r Henopausal Factors wirkup

HEGT AMEI A #‘ E ; = |
LXIT lo nexl besl -

wir bup | =0 ! e —
tolsode Mk y

: — ¥
- T
. Y : r o for ar
T (lamow) | \ Tx (diagnes v mode al episodes an| s

Flatch pattern e T Lher

not ' \ Improwva J
fmor e g S Improve.
=
atress Test Elective
y Slress Test
4y i { progneat ic)
' , : JI
ey - o hp
Anglogram . i p——
wvara B ot Y
n‘:l-l‘_—'ill'l.-"ll Olher ™~ 1 #
R -
- F
T

the functions that combine them) have to be “tuned”
not only to find the most likely answer but also to fo-
cus attention in a reasonable way. Inevitably they be-
come ambigtous summaries of implicit control parame-
ters. For example, MYCIN's certainty factors contained
probabilistic and salience information, an indirect result
of using them to focus attention (Buchanan and Sliort-
liffe, 1985).

Another important reason to maintain the distinc-
tion between combining evidence and control 1 that
combining evidence is only a part of the problem of rea-
soning under uncertainty. Other aspects include formu-
lating decisions, assessing the need for more evidence,
planning how to get it, deciding whether it is worth
the cost and, if it isn’t, hedging against residual uncer-
tainty. In MUM we address the problem of combining
uncertainty in the context of these other tasks.

noil

Imipriee

Vi

VY . \.LH-
4 & L
Stress Test M BHGINA
[st} EXIT by rnt post
wal kip
[
it
L
FITST AR FIA
EEIT fownr |y for
[#p=rlwepnl Spaan .
ol il 4 Figure I:

2.3 An Architecture for Managing Un-
certainty

Managing uncertainty in MUM requires many kinds
of knowledge, discussed in this section. Anticipating
section 2.3, on control, it may be useful to think of data
moving bottom-up through Figure 2 as it triggers hy-
potheses and is requested by MUM’s planner.

2.3.1 Types of Knowledge

Data, Evidence, and Interpretation Functions.

Evidence is abstracted from data through interpre-
tation functions. All data about a patient are stored
in frames that describe personal history, family history,
tests, histe-y of episodes, and other data, luterpreta-
tion functions map data to evidence; for example, in-
formation that a patient siokes 3 packs of cigarettes
a day is abstracted to the evidence heavy-smoker by
an interpretation function that maps data about smok-
ing habits to one of (non-smoker light-smoker moderate-
smoker heavy-smoker). Interpretation functions are of-

B e

P .

diseese- | diseese-2

iriggering-condition
1 _supporied(ciustier-4)

triggering-condition
7 supporied(ctustier-7)
combining-function
*1f supported(ciusier-4)
then supported
*11 supported(cluster-2)
then supported
®1f(end(supported(cluater-4)
(supportad(cluster-2)
then strongly-supported
«

combining-function.
“ 11 (ond (supported { clustur-2)
(confirmed (cluster-4))
then strongiy-supported

® fconfirmed(cluatar-1)
then detrected

Potentiol-svidence l;]- .:I_.

poltnlltl-uvlduncul!l ']

pnlcnlly-dulrcclhu

cluster—1 1

poltnllull’-lupponlng

combining-function:

clustar-2

11 (end(supported(evidence-1)
(nonsmoker({evidencs-2)
then strongiy-supported

combining-function:
11 (cenfirmed(svidence- 4)
then contirmed

e TaTR] | ey

Z X

evidence-1

tentiel-avidencs | o | 9)

svidence-2

interpretotion interpretstion-function:
function (belief 11 potient smekes
curve):

* pecks > 2 : hesvy-smoker
e 1 <packs < 2 :mad-emoker
/‘/ = pecks < 1 : light smoker
. e pocks = O ;: non-smoker
1 T
L 0ATA DATA]

FIGURE 2: KNOWLEDGE STRUCTURES IN MUNM

ten graphs called belief curves that relate ranges of a
continuous data variable to belief in evideuce. Figure
3 shows a belief curve relating the duration of chest
pain to the evidence classic-anginal-pain, Belief curves
and other interpretation functions are acquired from an
expert. They provide the same functionality as fuzzy
predicates (Zadeh, 1975), and generalize Clancey’s view
of data abstraction as categorical {Clancey, 1933).

Features of Evidence. Evidence may be character-
ized by its cost, reliability, and roles. The cost of evi-
dence reflects monetary cost as well as discomfort and
risk to the patient (later versions of MUM will separate
these and other determinants of cost). Reliability refers
to several factors, including false-positive and miss rates
of tests, and also the beliof in evidence derived from be-
lief curves (e.g., is classt « wnal-pain at least supported
by data about the pain < _.ation?) The most important
feature of evidence is the roles it can play with respect
to evaluating hypotheses. MUM recognizes five roles,
two of which are symmietric pairs:

Potentially-confirming and potentially-discon firming.

If evidence plays a potentially-confirming role with
respect to a hypothesis, then acquiring it might
confirm the hypothesis, though not all potentially-
confirming evidence will, in actuality, confirm. For
example, an EKG confirms the hypothesis of angina

-25=

only if “positive” (i.e., shows ischemic changes.)
Once confirmed (or disconfirmed), a hypothesis
requires no further evidence, though a diagnos-
tician may continue working to disconfirm other
hypotheses, especially if they are dangerous.

Potentially-supporting and potentially-detracting.
Like potentially-confirming and potentially-discon-
firming, but not conclusive. However, combi-
nations of supporting or detracting evidence may
be confirming and disconfirining, respectively (see
“Combining Func tions,” below). The combina-
tion referred to as cluster-2 (Fig. 2) is potentially-
supporting with respect to disease-2; cluster-1 is
potentially-dctracting with respect to disease-1.

Trigger. A piece of evidence plays the triggering role
with respect to a hypothesis if its presence focuses
attention on the hypothesis, or “brings the hy-
pothesis to mind,” or, in MUM, adds the hypoth-
esis to a list of potential diagnoses. Cluster-4, if it
is supported triggers disease-1 (Fig. 2). This role
of evidence is found in virtually all medical expert
systems.

Modifying. Some evidence does not support or detract
from a hypothesis so much as it alters the way di-
agnosis proceeds. For example, risk factors for
coronary artery disease (e.g., hypertension, ele-
vated cholesterol) play a modifying role with re-
spect to the hypothesis of angina since diagnosis
will proceed aggressively if they are present and
less aggressively otherwise.

These are the only roles currently used in MUM;
others are contemplated. Note that evidence can play
multiple roles with respect to any hypothesis; for ex-
ample, risk factors are both potentially-supporting and
modifying with respect to angina; and most triggers are
individually or in combination with other evidence at
least potentially-supporting (e.g., note the roles cluster-
4 plays with respect to disease-1 in Fig. 2). Also, one
piece of evidence can play different roles with respect
to several hypotheses (illustrated by the roles cluster-2
plays with respect to disease-1 and disease-2 in Fig. 2).
Finally, note that some evidence potentially plays two
symmetric roles, while some are “asymmetric”. For ex-
ample, a stress tert will either support coronary artery
disease or detract from it, while an EKG supports angina
if it is positive and is useless otherwise. That is, EKG
plays a potentially-supporting role only.

Figure 3

A beliel curve plotting the datum “Duration of Pain in Minutes
vs. belief in the evidence 'Classic-Anginal-Pain”

= Strongly-
B Supported
a
2 ' Supported
=)
=
<
& Unknown
w 'l
o
L]
[X] r
= Detracted A
— F.
= /
‘g Strongly-
Detracted

25 5 12

3]

4

S 6 7 8 9 i0

Duration of Pain in Minutes

Clusters. Physicians often see collections of evidence
that play particular roles in diagnosis; for example, short-
ness of breath that comes on suddenly but is unrelated
to exercise or other inciting factors triggers the diagno-
sis of pulmonary embolism. Just as evidence has roles
with respect to clusters, so clusters have roles with re-
spect to diseases, and these roles need not be support-
ing; for example, the cluster (patient-age < 30 and no-
family-history-of-coronary-events) plays o potentially-de-
tracting role with respect to all coronary diagnoses of
chest pain. Instead of saying that the available evidence
is a poor match to coronary diagnoses, we can say tlie
evidence is a good match to a cluster that potentially
detracts from or disconfirms coronary diagnoses.

Combining Functions. Every cluster includes a lunc-
tion, specified by the expert, that combines the avail-
able evidence for the cluster and returns a value for the
cluster given evidence. The values returned by combin-
ing functions are just “realizations” of potential roles of
evidence. For example, the value returned by the com-
bining function of a cluster supported by potentially-
confirming evidence could be confirmed. The value
for a cluster with several pieces of potentially-detracting
evidence might be disconfirmed, or perhaps detracted.
Combining functions are further discussed below.

Diseases. A diseaseis technically a cluster. 1t is a col-
lection of clusters, each of that plays an evidential role
in diagnosis and is comnbined by combining functions
with other clusters. ‘'hus diseases reside at the top of a
hierarchy of clusters (as shown in FFig. 2), each of which
has its own combining function and specifications of the
roles played by the clusters below it.

Strategic Knowledge. We characterize strategic kno
ledge as lieuristics for deciding which triggered disease
liypotheses to focus 1, and how to go about selecting
actions to gather eviience pertinent to these hypothe-
ses. These heuristics have the same conlingent nature
as Davis’ meta-rules (Davis, 1985) and control rules in
Neomycin (Clancey, 1985). Strategies are represented
as rules which include:

e conditions for selection of the strategy;

e a focus policy which guides the choice of a subset
of the triggered disease hypotheses to focus on;

e planning criteria which guide the selection of ac-
tions to gather evidence for and treat diseases cur-
rently in the focus.

Examples of focus policies are plausibility (choose
hyr otheses based on their degree of support); criticality
(focus on hypotheses that, if true, would require irnme-
diate action); and differential (focus on hypotheses that
offer alternate explanations for the symptoms). Exam-
ples of planning criteria are cost (prefer evidence that
is easy to obtain, and inexpensive on somne cost netric);
roles (prefer potentially-confirming over potentially-sup-
porting); and diagnosticity, meaning that a given result
has the potential to increase the belief in one hypothesis
and decrease belief in the otlier, as indicated by beliel
curves.

s
T

Py

J“:J“

2.3.2 Combining Evidence and Propagating Be-
lief

MUM combines evidence with local combining func-
tions, as shown in Figure 2. Typically, knowledge sys-
tems require three functions to combine evidence and
propagate belief. Tliese are illustrated in the context of
two inference rules:

RL: (A AND B) - C
R2: (D AND E) - C

One function calculates the degree of belief (doh) in a
coujunction from degrees of belief in the conjuncts:

dob(AND A B) = F(dob(A)dob(B))

The second function calculates the degree of belief in a
conclusion from

a) the degree of belief in its premise (computed by F£})

b) the “couditional” degree of belief in the conclusion
given the premise;

often called the degree of belief in the inference rule:
dob(Cg;) = F,(dob(AND A B),dob(C|{(AND A B)))

The third increases the degree of belief in a conclusion
when it is derived by independent inferences:

dOb(C}”&Rg) = Fg(dOb(CRI), df)b(Cng))

In MUM, these three kinds of combining are main-
tained, but with two important differences. First, there
are no global functions corresponding to £}, F;, and
F3; all combining is done by functions local te clusters.
Second, instead of the usual numeric degrees of belief,
MUM has seven levels of belief: disconfirmed, strongly-
detracted, detracted, unknown, supporicd, strongly-sup
ported, confirmed. These are just “realizations” of the
roles of evidence described earlier.

Combining evidence and propagating belief in MUM
is illustrated in Figure 2. Fach cluster, iucluding dis-
eases, has its own local combining function, specified by
an expert. For example, cluster-1 is strongly-supported
if the data support evidence-1 and if the data on a pa-
tient’s smoking habits support evidence that he or she
is a nonsmoker. This is a conjunction of evidence of
the kind calculated by Fy, above. Another is found in
the combining function for disease-1. If cluster-2 and
cluster-4 are both confirmed, then disease-1 is strongly-
supported. This illustrates the kind of combining for
which F,, above, is required: even when the evidence
for a disease is itself certain, the conditional belief in the
disease given the evidence may not be certain. Disease-
2 also contains a conjunctive rule, but the entire com-
bining function illustrates the corroborative situation

==

for which F3 is needed. In this case, cluster-4 and
cluster-2 individually play potentially-supporting roles,

and taken together case the level of beliel in disease-
2 to strongly-supporting.

Local combining functions have many advantages.
Foremost is the ease with which an expert can specify
precisely how the level of belief in a cluster depends
on the levels of belief in the evidence for that cluster.
Control of combining evidence is not relinquished to an
algorithm, but is acquired from the expert as part of
his or her expertise. Since local combining functions are
specific to clusters, they can be changed independently.
And since the values passed between them in MUM are
few, it i1s easy to trace back the derivation of a level
of belief and pinpoint a faulty local corrbining function.
The prospect of having to acquire many functions seems
daunting, but we have found it easy and intuitive, and
much easier to explain than a global numeric method.

2.3.3 Control of Diagnosis in MUM

Strategic control knowledge, which may be acquired
and modified like any other domain knowledge, will be
described in the context of the basic control loop which
it directs. The implementation of MUM'’s basic control
involves three components:

User Interface: uses data description frames in the
knowledge base to ask questions and create pa-
tient data frames for the results;

Matcher: uses the interpretation and combining func-
tions to record the effect incoming data has on the
belief states for clusters and disease frames, and
triggers new hypotheses as appropriate;

Planner: uses strategic control rules from the knowl-
edge base to guide the selection of focus and the
planning process.

The planner coutrols the user interface and the matcher
by requesting thieir services as described below.

Basic Control. The planner foilows a basic control
loop within which it interprets strategic control rules.
It is implemented in a blackboard system, with knowl-
edge sources specified in the same syntax as that which
strategic control rules are compiled into. This facili-
tates modification of the basic control described liere
as dictated by the strategic knowledge. The design of
the blackboard system was influenced by Hayes-Roth
(1985), and shares the emphasis on explicit solution to
the control problem. We first describe the basic control
loop, then strategies and their selection.

The basic control loop is initiated with the choice
of a straiegic phase. All strategic phases but one in-
clude a focus policy that directs MUM’s attention to
a subset of candidate hypotheses. This is followed by

the generation of short-term plans to gather evidence
and select treatment pertinent to these hypotheses (the
rule in Section 2.2.1 represents such a plan). Since the
effort of developing lengthy plans may well be wasted
in a domain permeated with uncertainty, we currently
constra.l plans to single actions or sequences of two ac-
tions where the applicability of the second depens on
the outcome of the first. Several short-range plans may
be generated and executed.

Carrying out plans typically consists of invoking the
user interface to request some information, updating the
status of the diseases with the matcher, and conditional
continuation of the plan. When no short-term plans
remain, the system iterates the basic control loop to de-
termine if a new strategic phase is appropriate, update
the focus, and generate new short-term plans. MUM
may respond to asynchromnous events such as the alter-
ation of a previously obtained data item by interrupting
this basic control loop to reconsider its strategy.

Strategic Control. We represent MUM’s overall
strategy as an ordered set of rule-like strategic phases,
shown in Figure 4. Fach phase has conditions that acti-
vate it. Once activated, a phase controls MUM’s focus
of attention and the choice of actions pertaining to the

hypotheses in this focus.

The phase Get General Picture is invoked when
the system is started, and mnay also be used if all pre-
viously considered hypotheses are ruled out. It has
no focus policy because no hypotheses are active when
it is invoked. 1t directs the planner to ask for evi-
dence that plays the potential-trigger role for one
or more hypotheses, pursuing the lowest-cost evidence
first. The cluster initial-consultation (consisting of
age, sex, and primary complat) meets the criteria of
potentially triggering many hypotheses and costing lit-
tle. The initial consultation 1 sually triggers some hy-
potheses, which result in a new strategic phase being
selected. 1f no hypotheses were triggered, the planner
asks for potential-triggers of higher cost.

The Initial Assessment for Triggered Hypothe-
ses phase is invoked when new hypotheses are triggered.
Since the conditions of the other strategic phases de-
pend somewhat on the level of belief in candidate hy-
potheses, this phase gathers preliminary evidence for
tire hypotheses. The focus is on the triggered hypothe-
ses, so only evidence playing some role relative to these
hypoiheses is considered by the planner. This phase
directs tlie planner to gather low-cost evidence for the
hypotheses. For example, MUM asks about aspects of
the patient’s episode (the event which is the primary
complaint) which bear on the triggered hypothesis, and
about risk factors.

As soon as the easy questions for triggered I'ypothe-
ses liave been asked, MUM decides between the next two
phases based its belief in the hypothese. asd whether
any of the hypotheses are critical, that is, sequire im
mdiate treatment i supported. Critical hypothese: ar.
dealt with first.

The Deal With Critical Iivpotheses phase pla
all candidate critical hypotheses in MUM’s focns. The
short range planner is then directed to attempt to =,
out these hypotheses. It begins witli potentially iz <
firming or potentially-detraciing evidence. f it 1.'ls v

Strategic Phase:
Conditions:

Focus Policy:
Planning Criteria:

Strategic Phase:
Conditions:
Focus Policy:

Planning Criteria:

Strategic Phase:
Conditions:

Focus-Policy:
Planning Criteria:

Strategic Phase:
Conditions:

Focus-Policy:
Planning Criteria:

Get General Picture.

No candidate hyvpotheses.
None.

Evidence must pley trigger
role; prefer low cost on alt
cost metrics.

Initial Assessment for
Triggered llypotheses.

One or more hypothescs

are triggered.

Focus on triggered hypotl: sses.
Must be low on all cost.
metrics; prefer stronger roies.

Deal With Critical « =sibilities
There are critical hypothe=es
whicli have not been contirmed.
discorfirmed or strongly
deiracted, and if they are
detracted, no other hypothesis
is confirmed.

Criticality.

Rule Out if possible,

else gather support.

Utility of evidence. Low cost
first; as needed let disconfort
and monetary cost increase.

Discriminate Strongest Hypotheses
More than one hypothesis

is supported.

Plausibility.

Diagnosticity, Low cost first.
Utility of evidence. Substitute
high cost confirniation

for one hypothesis with lower cost
disconfinnation for the other.

Figure 4: Four Strategic Phases it MUM’s Diagnosis

==

P .

A Sy

-

find any, then it looks for potentially-supporiing evi-
dence. It will not seek evidence that plays a lesser po-
tential role than evidence it already has. For example,
it will not seek potentially-supporting evidence for a hy-
pothesis that is already strongly supported, but rather
focuses on potentially-confirming evidence. The plan-
ner will focus on low-cost evidence first, but it is not
prohibited froin pursuing high-cost evidence as it was
in the previous phase.

If the focus of attention is not captured by critical
hypotheses, it is dictated by plausibility. The strategic
phase Discriminate Strongest Hypotlieses discrim-
inates competing alternatives with as little cost to the
patient as possible. As before, the potential roles of ev-
idence are used to decide whether it is worth acquiring.

Curiently MUM stops work when a hypothesis is
confirnied and no critical hypotheses remain in its focus.
We are implementing the next strategic phases, progno-
sis and treatment. Both provide evidence of diagnostic
significance; for example, MUM may begin treatment
for angina if it is strongly supported, rather than incur
the cost of absolute confirmation. If the treatment re-
lieves the symptoms, then it is additional evidence for
the diagnosis. If not, it is evidence that detracts from
the diagnosis and may support others. Since treatinent
provides evidence, we represent treatments as clusters,
exactly the same way as we represent tests such as an-
glography.

The emphasis in MUM is on asking the right ques-
tions in the right order without superfluous questions.
MUM'’s control knowledge is not yet sophisticated enough
to satisfy all these criteria. It asks questions in a rea-
sonable order, but it sometimes focuses on the wrong
disease. Since MUM is a nascent system, this does not
yet concern us. We believe the systemn is successful in
providing a framework for exploring manageinent of un-
certainty by sophisticated control, that is, by making
control decisions based on the roles, costs and other
characteristics of evidence, the criticality of diseases,
and the credibility of diagnoses.

2.4 Conclusions

MUM manages uncertainty by reasoning about evi-
dence and its current state of belief in hypotheses. Its
z.al i to generate appropriate workups for chest and
»bdominal pain, that is, to ask the right questions in
‘1 right order without unnecessary questions. To the
extent it succeeds, it demonstrates its ability to man-
age uncertainty, and to select the appropriate action
given uncertainty. We lave said this is a control task.
Indead, much of MUM’s architecture is devoted to ex-
plicit, evidence-based control.

-2G-

Much work remains to be done. Currently, MUM re-
sembles a programming environment more than a medi-
cal expert system. We are devoting ourselves to building
up its knowledge base of clusters, functions, and control
rules, while experimenting with improved representa-
tions for them.

Although MUM was designed for medical problems
and is discussed in that context, we believe the approach
to uncertainty and control it engenders is general to
classification problem solvers, as well as to other sys-
tems responsible for the management of uncertainty. An
empty version of MUM called MU is being developed
and will be tested in other domains.

3. A Typology for Constructing
Decisions

3.1 Introduction

Decision making involves identifying, comparing, and
ultimately selecting from among a set of alternatives.
When the alternatives are not known in advance, or
when the set of alternatives is large, decision making
becomes a constructive, action-oriented process. The
alternatives and their features, implicit in the descrip-
tion of a decision problem, must be compared and so
must be made explicit as the problem is solved. As
these comparisons are made, preferences amnong alter-
natives on features are also mnade explicit. We present a
typology of decision-making situations that tells how to
construct a decision, that is, when to add an alternative,
a feature, or a preference to a developing decision.

The emphasis of this work is constructive decision
making for Al programs. We focus first on problems
where alternatives are supported by conflicting evidence.
The many variants of this type of problemn are organized
into a typology of decision-making situations. Some sit-
uations permit an immediate choice between alterna-
tives. Others require actions to further construct the
decision. The typology associates appropriate actions
with decision-making situations.

The typology shows how to solve “apples and or-
anges” problems and generalizes this result to provide
a view of sophisticated control for decision-making Al
programs as table lookup.

Comparing tLe Incowparable. Decision alterna-
tives are compared on their salient features. Often, the
values of these features cannot be easily combined. We
call this the apples and oranges problem: When you
compare apples and oranges in a grocery store you may
find one fruit preferred on the basis of flavor and the
other on the basis of quality. If you can combine the fea-

el

tures to compare the alternatives on a single, composite
feature, then the choice is clear. But if, as in this case,
flavor and quality cannot be combined, then the chojce
between apples and oranges is problematic. Tradition-
ally, the apples and oranges problemn has been solved by
mappiag the values of features such as flavor and qual-
ity onto a uniform utility scale. The approach described
here keeps the features distinct. The inevitable problem
of conflicting features is solved by constructively adding
features and preferences to a decision.

Closer inspection shows that the apples and oranges
problem is not one, but a family of decision problems
with ditferent solutions. 1n this paper, we derive the
space of decision problems and show how actions asso-
ciated with difficult decision problems can be taken to
reformulate them as easier ones.

3.2 Decision Typology

We begin with a basic decision probleiiz in which two
alternatives are compared on two features, then show
how the typology of two-alternative, two-feature prob-
lems guides the construction of more complex decisions.
Alternatives are referred to as p and ¢, features as F,
and Fj, and values of features for specific alternatives as
Fi[p|. The symbol > indicates preference between two
values. Although we will be using some mathematical
symbols, none of the values need be numbers; for exam-
ple, we can say flavor(apples) > flavor{oranges) without
quantifying quality.

Characteristics of a Decision Two-alternative, two-
feature decision problems can be characterized along
five binary and ternary dimensions:

Sd|F|. A significant difference on feature F, indicates
that the values of the two alternatives are distinct.
If a decision between alternatives p and ¢ can be
based on the values Fi[p] and Fi|q], then the values
are distinct.

1 if Fi[p] and F|q] are distinct

Sd[ﬂ] - { 0 otherwise

Otherwise indicates no significant difference or that
we lack evidence to tell whether there is a signifi-
cant difference.

Sd[F;| Like Sd[F,], but for F;.

C[Fi,F)]. A conflict exists when F; and F; support
different alternatives.

1 if Fy[p]>F,[q| and F,[p]{FJ[q] or
if Fi[p|<Fi[q] and F;[p|>F}[q]
0 otherwise

CIR, F| =

O|F;, F;]. One feature is often more ymportant than
another. This means that one feature is preferred
to another (e.g., quality is preferred to flavor), or
that there is a greater difference between the two
alternatives on one feature than the other.

0 if importance(F;) = importance(F;)
if relative importance unknown

OlF:, Fy] = 1 if importance(/}} > importance([;)

or importance(F;) < importance(F;)

>|F;, F;]. Assuming that O[F;, Fj] = 1, we need to
know which feature is preferred.

SR By = { 0 or importance(F}) < importance(F
AR 1 if importance(F;) > importance(F})

We illustrate these dimensions in the context of the
problem of selecting fruit: F, is quality and I is fla-
vor. If the quality of apples is “good” and the quality
of oranges is “poor,” then Sd[F;] = 1 because good and
poor are distinct values. Similarly, if one prefers the
flavor of oranges to that of apples thien Sd[#] 1.

Since apples have better quality but oranges taste bet-
ter, C|F;, F;] = 1. Finally, if quality is preferred to taste
O|F,,F;] =1 and >[F;, Fj] = 1.

The space of types characterized by these dimen-
sions can be arranged in a table. The problem we just
described is case 23 in this table, illustrated in Figure
5. In English, case 23 says “the quality of evidence for
F[p] and F[q] is sufficient to claim that the difference
supports a choice between p and q; the quality of evi-
dence for F,[p| and Fj[q] is sufficient to claim that the
difference supports a choice between p and q; there is a
conflict between p and q on F, and Fj, and the feature
Fi is more important than F,.”

Collapsing the Table Figure 5 does not represent all
40 combinations of the possible values of Sd[F], Sd|F}),
C|Fi, Fj], O|F;, F;], and >[F;, F,]. From the perspective
of how a decision-maker acts, the 40 decision types con-
tain some redundancies. Consider these cases:

Case 18a: S[F|=1,8[F] =0, C[F,F] -1, Fi>F;
Case 18: S[F;| =0, S[F}| = 1, C[F, F}] = 1, F,>F,

In English, the dimension tor which vour evidence
supports a decision is tlie most iniportant diinension.
The cases are identical in the sense that a decision-
maker would not act differently in response to them.
Consequently, the two cases are represented only by case
18 in the table.

o IS

@
1a.
-l
¢ vl olo|o|e
A =1) ey)
o =|olo]w

DI FoS R PN

3|t | | e

-wQlo|olo
HO| Q|| -2
solo|ml=|wo
W Ol=|ofm=

—
(=]

=
©
Y
S
»
]

21

2
[

O | OO =
=1 =1 I ™

Oj—|=lolo

(=1 S N

Of=lm| =
=1 I ™
—l—| o] =] -
——|—lolo
—f e |]]

Figure 5: Typology of Decisions

Decision Actions The point of characterizing deci-
sions is to select appropriate actions. In our approach
there are three basic actions: decision, transformation,
and stuck. Decision means choosing an alternative based
on available evidence; for example, in case 8 (Fig. 1)
there are significant differences between the alternatives
on both features and their evidence does not conflict.
The decision is straightforward.

Transformations of one decision type into another
are appropriate when a decision cannot be made given
the available evidence. In case 0 (Fig. 1), the values of
the alternatives on features F; and F; do not distinguish
the alternatives, nor do we know whether one feature
is preferred. A decision in this case cannot be made
with confidence, but several transformations of case 0
are possible: If further evidence about F; potentially
shows that the alternatives can be distinguished on F,,
then obtaining the evidence transforms case 0 into case
1 (i.e., the 0 in row Sd[£;] is replaced by a 1). Obtaining
evidence of this kind for both features transforms case
0 into case 2. From case 2, one may confidently make a
decision. Similarly, if evidence exists that F; is preferred
to Fj, then obtaining the evidence tre -forms case 0 into
case 20. Alternatively, evidence may . » that neither
feature is preferred; obtaining this eviden.e transforms
case 0 into case 6. The idea of transformations is to
change one decision type into another, hopefully more
facilitative, type. Transformation is an appropriate ac-
tion for any decision type with 0 in either of its first
three rows or ? in its fourth.

The most obvious way to effect a transformation is
to seek more evidence. The table in Figure 5 allows us to
plan actions to obtain evidence, thus it guides the pro-
cess of constructing a decision. IHowever, the planned
transformation may not be possible; the actual transfor-
mation depends on the evidence obtained. For example,
we may gather evidence about F; with the intention of

-3~

transtorming case 7 to case 8. But if the evidence, when
obtained, indicates that F; and F, actually support dif-
ferent alternatives, then we end up in case 11 instead of
case 8.

In case 11, we are stuck: all available evidence about
the features has been acquired, but it supports conflict-
ing alternatives, and neither feature is preferred. From
case 11, no further transformation is possible, no action
is apparent. In fact, there actions appropriate for the
stuck case, but they expand the decision beyond the
two-alternative, two-feature case under discussion. If a
decision cannot be made on the basis of evidence about
the current features, then the appropriate action is to
further distinguish the alternatives with additional fea-
tures. Because we view decision making as a construc-
tive process in which alternatives and features emerge
only as needed, we imagine a decision-maker adding fea-
tures only when stuck, that is, in case 11.

Each of the 24 decision types has at least one appro-
priate action. Some suggest two (see Fig. 2). These are
situations in which a decision can be made, but with-
out complete confidence. For example, in case 9 there is
significant evidence for Fy, but not Fj, they don’t con-
tradict given the available evidence, and neither feature
is preferred. A decision could be based on F;, but not
without some uncertainty that F, actually supports a
different alternative than F;. Multiple actions permit
different strategies for selecting specific actions. For ex-
ample, a conservative strategy that tries to minimize
uncertainty in decisions encourages transformations.

3.3 Extensions to a Multifeature Model

The decision tables described so far allow compari-
son of two alternatives on two of their featnures. Some-
times, as noted above, a decision cannot be based solely
on these features. These situations arise in three ways.
First, evidence such as the preference for features may
be missing. Second, complete evidence inay 1ot support
a decision; for example, the values of the alternatives on

[.

ey

~

R

the features may be accurately known, but not signifi-
cantly different to support one alternative. Third, these
values may be accurately known, and significantly dif-
ferent, but support different alternatives. lu the first
situation, it is fairly obvious that we should seck the
missing evidence. In the last two, it is necessary to add
another feature. Psychological evidence suggests that
humans in these situations add features and alterna-
tives conservatively, what [Svenson 79| calls “choice by
feedback processing.” Our model emulates this iterative,
constructive behavior.

Adding Features Features may be added by substi-
tuting one for another or by combining a new feature
with an old one. In either case, the typology of Fig-
ure 6 suffices to represent two-alternative, multi-feature
decisions, In substitution, one of the two features cur-
rently under consideration is discarded and a new fea-
ture is substituted, This is appropriate when we know
that two alternatives are not differentiated on an fea-
ture (Sd[F;] = 0). The feature does 1ot provide a basis
for a choice. It should be replaced by another, more
informative, feature.

The second method for adding features is combina-
tion: the evidence provided by the new feature is coin-
bined with evidence accrued from previous comparisons.
This is appropriate when the previous features favor dif-
ferent alternatives. For example, when we add another
feature F,,, to case 11, [1110*], we hope to move to col-
umn 19, [11110], or 23, [11111]. Unlike case 11, cases 19
and 23 indicate a preference between features, Assum-
ing that the alternatives are distinguished on F,,, (oth-
erwise adding it would gain notliing), and assuming that
a combination of two significant features are preferred
to one, Iy, ir.~oduces a preference order when com-
bined witl: the old feature it corroborates, resulting in
case 19 or 23. Thus, the typology of Figure 6 suffices for
a two-alfernative, three-feature decision and, by induc-
tion, for two-alternative, multi-feature decisions. Since
case 11 involves a conflict between features, F),,, must

corroborate either F; or F;. Thus, new evidence can
clustered to support one of two alternatives. Th's addi-
tional support contributes to an ordering over clusters
of features, represented by values in the fourth (order)
and fifth (preference) rows.

Clustering is the key to extending the two-alternative,

two-feature situations to two-alternative, N-feature cases
and finally to N-alternative, N-feature problems, be-
cause it permits complex decision situations to be con-
structed iteratively within the framework of our decision

typology.

-32~

_Case 0 [1 |2]3] 4 5 6 7
1 e
Sd[F] 0o 11 1o 1 1 0 [0
Sd[Fy] 0 | o 1]0] o 1 0 1]
T » T T
hFilo Jofol1lt 110 [0]
OF, KI| T [7 1771 ? 0 0
Z(F, F T S B o ma s ma

l_ctlon “ID/TID/T|[D[T |D/T|S/T]|D/T]|D/T '[|

| 8 |9 10 11 12| 13| 14715
| sdF, 1o 1 1 0 1
PSR 1ol o 1] 0 0 1 1
C[F,,FJ]_ 011 1 7o 0 0 o |
| o[£, F, 0oJojc o 1 1 1 1]
15[F, R T [F * ¥ 0 0 0]
[_Actlon D _[D/T S | D/T |1 T,DJ_ D/T] D |
_ 6 | 17 | 18 20 21 22 |2
| SAF] [o 1 | o 1 0 1] 0
Sd|F,| 0 o 1 1 0t o 1
C[F, F; 1 | 1 1 1 0o [0 1 1
OlF, Fj| | 1 1] 1 1 1_ 1|1 1
>F,,F 0o 0 [T 1 |1
H_Actxon [D/T | D/T | D/T [D/S D/T D | D/T]|D/s

Figure 6: Decision Actions

Revised Set of Decision Actions With the abil-
ity to clustei evidence, we can determine what to do
even in very difficult decision sitnations. The initial
set of actions, decision, transformation, and stuck can
be augmented. The new set is decision, transforma-
tion by feature, transformation by order, substitution,
and combination. In transformation by feature (Tf), we
acquire additional evidence about whether a feature dis-
tinguishes alternatives. This can change Sd[F;] = 0 to
Sd[F;] = 1. Transformation by order (7o) is the corre-
sponding action for gathering order preference informa-
tion. It can transform O[F, Fj] =7 to O[F;, F;] = 0 or
O[F;, F;] = 1. If complete knowledge of the alternatives
is available, but a decision still cannot be made, a state
can be transformed by adding a new feature, either by
substitution (Su) or combination (Co).

Figure 7 contains the decision states with their ap-
propriate actions. The actions are divided into two
rows. The first row shows the actions for states with
complete evidence. The second describes actions to be
performed when some of the state information is miss-
ing. The transformations are listed with numbers that
indicate tne set of possible states you might end up in.
Note it is not possible to say exactly which of these
states will arise.

The actions presented in Figure 7 are somewhat sub-
Jective. In general, combination can be done in auy
state. It isn’t listed because other actions are often more

SR . <% | ow—hend

.

Cage 0 1 R 4 5 6 7
Sd[F, 0 1 1] o 1 1 0 |0]
’sjdﬁ,-___ R I S 0 1 0 1
ClFy, Fj] o[o 0 1} 1 1 1 0 0
OlF:, F, ? ==, 5 R s
‘> F,', F_, & ¥ £ [* k] * * 12
All Co Su | Su Co Co Su
Actions | Info D D D | D D D
Part | Tr O, | Tf1,5,8 TTf345 [Ti24 Tf6, | TI 7,
Info | 1,4 To 7, To9, | To10, | Toll, | 7,10 | 811
13,14 | 1622 | 17,18 | 19,23)
8 0 10 11 12 13 [14 T 15
sd[F| 1 T i = i g e I 1
Sd[FJ-] 1 0 0 - 0 l 0 1 1
C(F:, Fy 0 1 1 1| 0 | 0 | 0 [0 |
O[F; F; 0 0 0 0 | 1 | 1 | 1 1 7
SIF., F; N i J] 0 | 0 | 0 0 |
All Co Su Su Co | Co T Su T Su [Co
Part £9,10,7'1 Tr10,11,8 Ti 12,13, | Tf 13,15,]l T 14,15, |
— Info | To 15,21 laras | 1mp 18,19 | I
16 17 18 19 20 21 22 23
Sd[F] 0 4 1l o 1 0] 0 i
Sd[F,] 0 0 1 1 0 1 0 =
ClF,, F; 1 1 1 1 0 0 1 1
oi(r_,,l_?j 1 1 [. 1 I (A 1
>|F., F, | 0 0 0 0 11 1 1
TAlL T Co Su Su " Co Co Co | Co Co
Actions | Info 1 i D
Part | Tf 16,17, | Tf 17,10, | T1 18,19, Tf 20,13, Tf 22,13,
Info | 13,14,18 15 15 | | 141718 14,17,18

Figure 7: Revised Multi-Feature Decision Actions

appropriate; for example, substitution is more appropri-

ate

when one feature is insignificant. Decision could be

made in cases other than those listed, but they would
be precarious decisions.

3.4 Changes to Decision State

Adding a new feature potentially affects every cell in
a decision state, that is, each value Sd[F}], Sd[Fy], C[F,

Fl,

O[F, Fj|, and >|F, F;]. In combination with a new

feature, a previously insignificant one may becomes sig-
nificant (e.g., Sd[F] = 0 but Sd[FandF,.,] = 1). Less
obviously, adding a new feature can make a previously
significant one insignificant. This happens when the al-
ternatives differ so enormously on the new feature that

any

differences on the old one(s) cease to be significant.

C|F,, F;] may change if the new feature produces a con-

flict

, and O[F;, Fj] and >[F,, Fj| change by clustering

features. Within the framework of our typology, the
effects of adding a new feature are:

1

2.
3.

. to introduce a conflict where there was none
to take a side in a conflict

to join the consensus (C[F, F}, Fy] = 0) but lend
it legitimacy since Sd[Fy] = 1

. to introduce an ordering where there was none

(e.g- O[F, F]=0 but O|E(F, Fy)| - 1)

~33=

5. to change an ordering (e.g., >(F,Fj] = 1 but
>[F"’(FJka)] =0

6. to produce a change in relative significance when
adding radically divergent features.

Figure 8 shows all tlie possible actions and their ef-
fects for a single case in the typology, case 4. In this
example, tliere is enough of a difference to support a
decision on F;, but not F; and the evidence of the two
features is contradictory. Four actions are appropriate:
transformation by feature (the 0 value for Sd|F;] may
indicate insufficient evidence), transformation by order,
substitution (for F}), and combination. Note that it
is possible to return to the same state, case 4, but by
different paths. Substituting F; or combining features
transforms case 4 to case 5. But note that when case 5
was reached by combining features, one of them, F; or
Fj, actually represents the evidence of two features and
so supports a decision more strongly. (This difference

will be represented explicitly in a more complete state
table).

The Mechanics of Combining Features As men-
tioned above, combining features may produce major
changes in the decision state. However, the set of possi-
ble new states can be enumerated. Figure 9 presents the
set of possible states that can be reached by combining
a new feature with all previous states.

A

P . <

O

-CHg PN STuALAng -;
.-‘-'.
-

e e

-~ i
»

|l|l.
!
L3
cn
|1
7]
[*]

Figure 3: Singie Transitlon with Multlple Features

The first five columns of Figure 9 have the same val-
ues as the rows in previous tables. Sd|F| is the signifi-
cant difference value of the new feature; it is always 1,
indicating that the new feature discriininates the alter-
natives. Sd[F¢| is the significant difference of the com-

bined features; the values in its column are the features
that have been combined along with their possible val-

ues. C[all] shows whether there is a conflict between the
combined values and the single feature. >{Fy, Fy| de-
scribes an order between the combined feature and the
single feature. The column labeled ‘Transition’ shows
the possible transitions from that state. Finally, # indi-
cates how many significant features had been combined
to produce the F¢ feature.

Figure 9 presents the single step transitions when
adding features to states as represented in the two fea-
ture tables. We are currently working on a state tran-
sition diagram that will describe all the possible tran-
sitions in the construction of a decision between two
alternatives.

| Sd[F] | Sd[Fy] | C|F;, Fy] | O[F:, Fy] | 3[R, Fy|
0 0 0 0 .
0 0 1 0 |]
1 | o 0 0 *
1 0 1 0 A
= o . - A
1 1 1 0 ¥
1 1 1 0 i
o | o [o T 0/1
0 0 1 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
1 0 0 1 0/1
1 0 1 1 0
1 0 1 1 0|
T 0 1 1 1|
1 0 1 1 T
| I 0 1 " 0/1
1 1 1 1 0
1 1 1 1 0
1 1 1 ! 1
1 [1 1 1 1
Sd[Fy] | Sd[F,:] | Clall] | >[F.:, Fy| || Transition %
1 j0/1 | /1 ? 0000* - 0/110/10/17 | 0
T ik 1 1 ‘ 1 0010 -~ 10110 RN
1 i1 | o0/t ? 1000* — 110/10/17 1
1 | k1 N 1010 = 10110 2
1 jk 1 1 1 1010 11111 1
1 k1 | 0/1 ? 1100* —110/10/17 2
1 ik 1 1| 1 1110 11110 2
1 o/t [o/t T 7 00010/1 — 0/110/10/17 | 0
1 ki | 1 | o 00110 » 10110 1
1 k1 [1 77 00110~ 0110/17 i
1 ki [1 ¢ 00111 = 1010/17 1]
1 jk 1 1 1 00111 - 01111 1]
1 ij 1 0/1 7 10010 - 110/10/17 1
1 [k1 [1 7 "o Jiotwo-10110 2|
i jk 1 1 i 10110 » 1110/17 1]
1 | k1 | 1 | 7 10111 —1010/17 [2]
T k1 [1 1 0N 11111 14
T y 1 0/1 7 11010/1 — 110/10/17 2
1 ik 1 1 0 11110~ 11110 T2l
1 jk 1 1 7 F1i0—» 1110/ % 2 |
1 [k [17 s rii1o0/17 2|
IR T N 1111 » 11111 2]

34

Figure 9: Transitious upon Combining Features

3.5 Conclusions

We have presented 2 model of constructive decision
making. We envision a decision-maker starting with a
two-alternative, two-feature problern, then acquiring in-
formation, and perhaps adding features, under the guid-
ance of actions associated with decision types. This
model raises the intriguing possibility of controlling de-
cision making in Al programs by table lookup. Each
decision situation is first classified, then modified by
one of the associated actions. The model is not in-
tended to produce optimal solutions to complex decision
problems given complete information, but rather to ex-
plore methodologies for structuring decision problems,
performing symbolic comparisons, and reasoning about
uncertain decisions.

Other systems have viewed decision making as a con-
structive process. GODDESS, a domain independent
decision support system, constructs a hierarchical goal
representation of decision alternatives by selectively fo-
cusing the users attention on the miost crucial issuve:
[Pear] 82]. Users assign numeric values to probabili-
ties and importance, and the program propagates them
through the structure. ARIADNE does not address
the decision formulation problem, but rather empha-
sizes evaluation by using linear programming algorithms
to produce a dominance structure for the alternatives’
probabilities and utilities and by allowing the iterative
addition of alternatives [Sage 84].

Three facets of the decision typology model are par-
ticularly appealing. First, two-alternative, two-feature
decisions can be characterized according to the dimen-
sions of the decision without requiring an underlying
scale of comparison. Second, the typology relates ac-
tions to decision types. Finally, the model shows how
to change difficult decisions into more tractable ones us-
ing well defined transformations that explicitly identify
the possible results of actions.

Before the model is fully realized, we 1nust resolve
two issues. First, the conditions and mechanisms for
adding new alternatives must be specified as they were
for new features. We believe that alternatives can be
clustered like features, so the two-alternative, two-feature
typology might serve for multiple alternatives and fea-
tures. The second issue is to add continuous values to
the model. The binary/ternary formalism is abstract.
For most situations, this abstraction is not only accept-
able, but fully indicative of the appropriate actions.
However, it does not explicitly capture the effects of
extreme values or context. Sd[F;| indicates a disparity
between alternatives on F;, but not its magnitude. The
difference in degree of differentiation between alterna-
tives on features is captured in the O|F,,F;| diinension,
which may favor the feature that produces a great dis-
parity. This, in turn, implies that O[F;,F}] is not inde-
pendent of alternatives.

«35=

4.Classification by SemanticMatch-

ing

4.1 Introduction

Classification problem solving involves matching data
with pre-established prototypes (Clancey, 1984). Often
the match is not exact: it may be partial because some
aspects of the prototype lack matches in the data. This
paper describes another kind of partial matching and
the role it can play in classification problem solving. Se-
mantic matches hold between concepts that are linked
in characteristic ways in a semiantic network. We have
found that the degree of fit between data and a pro-
totype depends on these semantic matches. Moreover,
the likelihood of a prototype given the data (in the con-
ditional sense) depends on these matches. In another
paper we argued that degrees of belief in classification
problem solvers should be interpreted in terms of seman-
tic matches (Cohen et al. 1985). We have developed a
program called GRANT that exploits semantic match-
ing to find sources of research funding that are likely to
support particular research proposals.

4.2 GRANT

GRANT is a knowledge system that finds sources of
funding for research proposals. The user builds a repre-
sentation of a research proposal and instructs GRANT
to search for funding agencies that are likely to pro-
vide support. GRANT first constructs, then ranks, a
candidate list of agencies. An agency is added to the
candidate list if a single topic in its statement of inter-
ests is a good semantic match to a topic in the research
proposal. Semantic matches exist between topics that
are the endpoints of particular paths through a semnan-
tic network. Agencies on the candidate list are ranked
by the number of semantic matches between all the top-
ics in the proposal and all the topics in each agency’s
statenient of interests. The best-ranked agencies are
thus those that support the largest number of topics
that are semantically related to the proposal.

4.2.1 Knowledge Representation

GRANT depends ou a knowledge base (KB) of re-
search topics and a set of rules for searching it. The
latter is described in the next section. The KB is a se-
mantic network of approximately 4500 node with over
800 research topics. Figure 10 shows a fragment of
GRANT’s knowledge about the heart, cardiovascular
illness, and related topics. Nodes in the network are
defined in terms of their relationships with others; for
example, the heart is something with the purpose of
circulation, the setting of cardiovascular illness, and an

.

St e e et gttt e i ‘-—”i—r-_u—A

-
—— s
Red Blood Cell

Prysinlogical
wiem

5y
I Study =609 i it ol
e

I Study +527 | v
"t poran o

I Promate '48;t

Study 690 |- 7
o

example of an organ®. Appendix 1 lists the most com-
mon relations between topics in the GRANT KB,

The GRANT KB acts as a semantic index to fund-
ing agencies. Nodes are added to the semantic network
as necessary to define the research interests of agen-
cies. An agency is represented as a frame with slots
for stated research interests, average award size, citi-
zenship restrictions, geographic preferences, and so on.
The research-interest slot holds pointers to instances
of one or more activities that are liuked with topics in
the KB. GRANT recognizes 10 activities:

Design Educate Improve
Plan Promote Protect Study Train

For example, the agency associated with study-689
in Figure 10 is interested in funding studies of cardio-
vascular illness and the heart. GRANT’s KB currently
includes the 690 agencies that together provide most of
the research monies at the University of Massachusetts.

When GRANT's user creates a research proposal,
it is linked into the KB through its research interests
just as funding agencies are. The frames that represent

3And thus, by a plausible inference, a component-of the body.
See Section 5.

Circulation

Intervene Manag

~-36-~

N
it

T 3

Lzl

o, TR By
S

5 AFIBEr oL berogis
.
i i

Figure 10:

agencies and proposals have the same slots, illustrated
in Figure 11.

4.2.2 Search Algorithms

GRANT finds agencies to [und a research proposal
by finding paths between the nodes that represent the
proposal’s research interests and nodes associated with
agencies. A blind search of the network in Figure 10
would begin, say, at the node study-527 and extend to
its associated node cardiovascular system, then to the
associations of this node phystological-system, vascular-
system, heart, study-609 and so on, like ripples in a
pond. If a node is found that represents a research in-
terest of an agency, then a path has been established be-
tween the proposal and that agency. The GRANT KB
includes so many agencies and is so highly connected
that, on average, blind search finds 245 agencies within
4 links o” any proposal. But according to our expert, on
average 93.1% of these agencies are unlikely to fund the
proposal. For GRANT to be useful, this false-positive
rate must be reduced. One method is to avoid finding
unlikely agencies, and the other is to discard them once
they are found. These methods are discussed in turn.

oAy =i

pawny

The ABC Foundation is interested in provid-
ing both grants and direct loans in order to
help promote sexual education and to help
control sexually transmitted diseases. Funds
are available for the management and main-
tenance of clinics ...

Funding-source*4:

is-a : funding-source
title : “ABC Foundation”
descr : “... promote sexual
education and to help ...”
topic : manage*4
Manage*4:
is-a ! manage

topic-of : funding-source*4

object : clinic

subject : sexually-transmitted-disease

focus : gonorrhea herpes
venereal-disease contraceptive

purpose: control educate

Figure 11: The ABC Foundation is represented by the
frames FUNDING-SOURCE*4 and MANAGE*4

Best-first Search. One can avoid finding unlikely
agencies by pruning the pa.hs that lead to them during
search. Figure 12 shows th 'ee kinds of paths. The first is
an atomic match between the proposal and the agency:
the object of the proposed study-418 is vascular-disease,
which is also the object of study-297, a research interest
of the agency. With few exceptions an atoinic match
indicates that the agency is likely to fund the proposal.

Since the links in GRANT are directional, and searche:
proceed from proposals to agencies, the path between
the proposal and NHLBI is

study—418 P vascular -disease
297

A path endorsement is a generalization of a set of
paths, obtained by dropping intermediate nodes and
preserving only the relations. The path above is thus
an instance of a general (object, object-inverse) path en-
dorsement.

The second path in Figure 12 is a semantic match
between a proposal and an agency. The proposal wants
to study hypertension. Whereas an atomic match, rep-
resented by a path endorsement like (object, object-inverse),
guarantees that proposal and agency have a common
interest, a semantic match ensures only that the inter-
ests of the proposal and agency are somehow related.

object—inverse
—_

study-

_37=

The nature of the relationship, represented by a path
endorsement, determines the likelihood that the agency
will fund the proposal. For example, when an agency
says it funds research on vascular disease, it means that
it funds research on many or all kinds of vascular dis-
ease, ircluding hypertension. This argument holds for
agencies and topics in general: if agencies say they fund
X, they are likely to fund instances of X. By this rea-
soning, il we begin a search at a proposal and follow a
(object, isa, object-inverse) path to an agency, then the
agency is likely to fund the proposal. Any path that
is an instance of the (object, isa, object-inverse) path
endorsement is apt to find a likely agency.

Just as path endorsements mark likely paths to agen-
cies, so they mark paths to be avoided. The third path
in Figure 12 is an example. The research topic of the
proposal is anorezia and that of the agency is bulimia.
Now bulimia is an instance of an eating-disorder and
when an agency says it will fund the study of an instance
of X it usually means that it will not fund the study of
other instances of X. This agency is unlikely to fund
the study of other eating disorders such as anorexia. In
general, if a path between a proposal and an agency is
an instance of thc path endorsement (object, isa, isa-
inverse, object-inverse), then the agency is unlikely to
fund the proposal and the path should be avoided.

Path endorsements thus constrain the search for agen-
cies in GRANT. Appendix 2 lists some of GRANT’s
path endorsements. The complete set of path endorse-
ments is still only a fraction of the combinatorially pos-
sible path endorsements. Any path that has not been
classified as likely or unlikely is denoted unkrown. Best-
first search in GRANT proceeds as follows:

Assume the program starts at a proposal
and folows link /; to node n,: ;n,). If
a continuation of this path along link [, to
node n, results in a path endorsement (I;,/;)
that GRANT recognizes as pocr, then n; is
pruned from the list of nodes that GRANT
tries to expand. If (/;,/,) is a good path en-
dorsement, then GRANT will give n; prior-
ity to be expanded before any node n; found
by an unknown path (I;n;/;n;). Search from
any path longer than 4 links is terminated.

Ranking Agencies by Partial Matching. The re-
sult of best-first search is a candidate list of agencies.
Each is known to have a single research interest that
atomically or semantically matches one research inter-
est of the proposal. To the extent that the proposal
and an agency share several common research interests,
the agenry is more Fkely to fund the proposal. Thus,
GRANT ranks the candidate list of agencies by the de-
gree of overlap beiween the research interests of the
proposal and each agency. This is done by a partial

matching function based on both atomic and semantic
matching. Hayes-Roth (1978), Tversky (1977), and oth-
ers measure the degree of overlap between sets in terms
of set intersection and symmetric difference; for exam-
ple, Tversky’s contrast model (1977) calculates overlap
this way:

S(a,b) = 0f(AN B) — af(A— B) - (B - A).

The function f returns the cardinality of the set to
which it is applied. If A and B are frames, then f(A
N B} is the number of slot-value pairs shared by A and
B, and f(A — B) is the number of slot-value pairs in

A not shared by B. The parameters 8, a, and § are
set empirically; in GRANT each is 1.0. If A and B are
frames representing the research interests of a proposal
and an agency, respectively, then S(a,b) measures the
number of research topics they have in common relative
to those they do not share. Agencies for which S(a,b)
is higher . re more likely to fund the proposal.

In GRANT, (A N B) includes both atomic and se-
mantic matches. If a path between A and B contains
a single node (e.g., the first case in Fig. 12), or if the
path is an instance of a likely path endorsement (e.g.,
the second case in Fig. 3), then f(A N B) is incre-
mented. Unlikely path endorsements, such as the third
case in Figure 12, and unknown paths do not contribute
to f(A N B). The quantities f(A — B) and f(B — A)
are increased when research topics in the proposal lack
an atomic or semantic match to the agency, and vice
versa.

In summary, GRANT searches for agencies in two
stages. First it constructs a candidate list of agencies
by best-first search in a semantic network of research
topics, then it ranks the agencies on the list by their
degree of overlap with the research proposal.

4.3 Analysis of GRANT Performance

GRANT’s performance has been tested at all stages
of its development. The basic method is to run sam-
ples of proposals and coinpare the agencies selected by
GRANT with the choices of our expert. Sample sizes
have ranged between 20 and 30 proposals. We compute
many statistics for each search from a proposal, but two
are broad indicators of GRANT’s performance:

hit-rate

agencies judged good by tlie expert

false-positive rate =

Figure 12:
Paths Between Proposals and Agencies
{ Proposel ——{Agency

o PO
(Proresl

(Froposa ~

Eating
Disorder

We average these statistics over the searches from
the individual proposals in a sample.

When we first tested GRANT (Cohen et al., 1985)
its knowledge base contained approxirmately 700 nodes
and 50 agencies. We contrasted blind and best-first
search as follows: for each of 23 proposals the system
searched blindly for agencies until it reached a prede-
termined stopping criterion. O1 a.erage, blind search
found 15.1 agencies per proposal. We gave our expert
the list of agencies found for each proposal by blind
search and asked him to rank each agency as likely or
unlikely to fund the proposal. On average, only 2 agen-
cies per proposal were considered likely; that is, the
false-positive rate for blind search was (15.1 - 2)/15.1 =
86%. In contrast, best-first or path endorsement con-
strained search found on average just 2.78 agencies per
proposal, of which 1.48 were judged likely to fund the
proposal. The false-positive rate was 32%, a big im-
provement over blind search. The downside was a hit
rate of 80%, indicating that GRANT had pruned away
one likely agency in five. We have tested all subsequent
versions of GRANT this same way, nsing blind search
to find candidate agencies and an expert to rank them,

agencies judged good by GRANT and by the expert

agencies judged good by GRANT and bad by the expert
number of agencies judged good by GRANT

-38~

e P T — L. ... A .

then comparing best-first search with the expert’s rank-
ings. Table 1 shows best-first search statistics for sev-
eral versions of GRANT. Blind search statistics are not
represented; in all tests blind search had a false posi-
tive rate greater than 80%, and as the knowledge base
increased in size this figure increased dramatically.

Grant, Spring 85 (700 nodes, 50 agencies)
Hit Rate 80%
False Positive Rate 32%

Grant, Fall 85 (2,000 nodes, 200 agencies)

Hit Rate 80%
False Positive Rate 26%
Contrast Model
Hit Rate 76%
False Positive Kate 227

Grant, Winter 86 (4,500 nodes, 700 agencies)

Hit Rate 98%
False Positive Rate 61%
Contrast Model

111: Hit Rate 96.1%

111: False Positive Rate 57%

Grant, Winter 86 (4,500 nodes, 700 agencies)
Modified Path Endorsements

Ilit Rate 96.3%
False Positive Rate 55.8%
Contrast

111: Hit Rate 96.4%

111: False Positive Rate 53.4%
Table 1.

The differences between GRANT today and the ver-
sion we tested in Spring, 1985 are its size and the in-
corporation of Tversky’s contrast model for summing
the total degree of overlap between proposals and agen-
cies. The false positive rate of the early version, 32%,
decreased during the subsequeny months as the knowl-
edge base increased to 2000 nodes with 200 agencies. At
that time we introduced the contrast model, described
above, and realized a further small decrease in the false
positive rate, which was offset by a decrease in the hit
rate. In the last two months we have again more than
doubled the size of the knowledge base and more than
tripled the number of agencies from the Fall, 1985 level,
As a result, performance has decreased substantially.
The hit rate of best-first search is 98%, but the false
positive rate is 61%: the system finds virtually all tlie
agencies it should, but nearly two-thirds of the agencies
it finds are not likely to fund the proposal.

-39~

Why did the increase from Spring, 1985 to Iall, 1985
not decrease GRANT’s performance, while the latter
one did? Many factors are iuvolved. First, the density
of agencies 1s increasing. In the early version, 700 nodes
supported 50 agencies — a ratio of 14:1. In Fall, 1985,
the ratio was 10:1. The most recent knowledge base has
a ratio of 6.4:1. It is much easier to {ind many agencies
close to a proposal in GRANT s semantic net than it was
in the past. Indeed, we have evidence to suggest that
as the density of the knowledge base increases, the hit
rate goes up and the false positive rate down: An inter-
mediate versioln, of the Winter, 1986 knowledge base in-
cluded approximately 600 orphans, nodes used to define
another node but disconnected from all other ncdes. In
this version, the density of nodes per agency was 5.8:1.
There were too many agencies and too few associative
paths to differentiate good agencies from bad ones.

A second contributor to the high false positive rate
in the Winter, 1986 version is the kinds of agencies being
represented. Roughly 200 of the new agencies were for
the arts and humanities. Their descriptions of research
interests were fairly broad and gave little basis for dif-
ferentiation. Consequently, when GRANT searches in
that part of the knowledge base, its false positive rate
increases dramatically. A related problern is that in
the most recent version of GRANT, new agencies were
not represented in as much detail as old ones. Neces-
sarily, this meant viable distinctions between agencies
were lost.

The relations we use to represent agencies have not
changed appreciahly since the early version of GRANT,
but the number of things they are required to repre-
sent is greatly increased. Combined with the fact that
GRANT was devzloped to represent “hard science” top-
ics and now includes arts, humanities, and social sci-
ences, this suggests that the relations must be aug-
rmented and perhaps reworked. Tlhis also requires re-
working the set of path endorsements. In fact, an exper-
imental set of path endorsements gave somewhat better
performance for the Winter, 1986 version. The hit rate
remained very high but the false positive rate dropped

t0 55.8%. _ _
The partial matching algorithm, based on T'versky’s

contrast model, was not as effective as we had hoped in
pruning agencies based on the total degree of overlap be-
tween proposals and agencies. In general, the false pos-
itive rate can be reduced but not witliout a correspond-
ing reduction in the hit rate. The algorithm contributes
little because in most cases, a proposal shares only one
research topic with an agency. Since this overlap is usu-
ally found by semantic matching, best-first search will
continue to he the heart of GRANT’s problem-solving
method, and path endorsements will receive more atten-
tion than tuning the partial matching algorithm. The
next section describes an algorithm for learning path
endorsements.

4.4 In Prospect: Learning Path En-
dorsements

The likelihood that an agency will fund a proposal
depends on the path endorsement that characterizes
the semantic match between them. Path endorsements
as discussed above either support the proposition that
the agency will fund the proposal, or detract from it,
or their support for the proposition is unknown. In
practice, GRANT’s path endorsements are empirically
ranked into six classes: very likely, likely, maybe, un-
known, and trash. Detracting path endorsements be-
long to the class trash. The class very likely is reserved
for atomic matches. Thus, semantic matches that sup-
port the proposition that an agency will fund the pro-
posal are differentiated only by the classes ltkely and
maybe.

We have developed an algorithm to assign a contin-
uous weight to path endorsements, based on whether
they find likely agencies or false positives. The algo-
rithm learns from examples presented by a human tu-
tor. Each example is a pair of nodes for which the tutor
expects GRANT to find a seinantic match. The algo-
rithm generates a set of paths between these nodes from
GRANT’s knowledge base, and adjusts the weight of

each path to favor short paths over long ones. After
many iterations, short paths that are commonly found
between training examples have high weights, relative
to other paths.

The algorithm has been tested on small samples
of examples and it has not yet been integrated with
GRANT. In prospect, however, its principle advantage
is that it learns the empirical worth of path endorse-
ments, in contrast to our a priori efforts to categorize
path endorsements as likely or maybe. Kjeldsen (1986)
describes the algorithm in detail.

Two other extensions to GRANT should be men-
tioned. First, we have developed an “empty” version
and will be experimenting with semantic matching in
other domains. Second, we are generalizing the infer-
ence rule that underlies GRANT — “if an agency is in-
terested in X then they will be interested in Y = R(X)”
— to a logic for plausible inference in associative knowl-
edge bases. This project is discussed in the next section.

4.5 Appendix 1

Relations for funding agencies:

1. The TITLE slot should contain a text string with full
title that will include the Parent Agency, Department,
and Program Name.

2. The UNIQUE- ID slot should contain a text string that
is the unique number assigned by the Catalogue of Fed-
eral Domestic Assistance (CFDA).

3. The FUNDING-TYPE slot should contain the type of
funding that is available, e.g., project-grant, large-grant,
small-grant, direct-loan, fellowship, or scholarship.

4. The CONTACT slot should contain the name, address,
and phone number of the person to contact for more
inforination and applications.

5. The DEADLINES slot should contain the application
and renewal deadlines for the prograin.

6. The DESCRIPTION slot should contain the abstract
that is provided by the agency and describes their in-
terests and motivations.

7. The TOPIC slot should contain one or more instaices
of the STUDY, MANACGE, EDUCATE, or ENGINEER

frames.

8. The PURPOSE slot is optional for the top-level of a
funding-source frame since it might be present in one
of the values for the T OPIC slot.

Relations for defining research interests:

1. The OBIECT slot contain the person, place, process,
or thing that is being studied.

2. The SUBJECT slot contain the particular filed of study
that is to be applied to the object.

3. The FocuUs slot should contain the particular aspect
of the subject that is being considered.

4. The DV slot should contain the object that is being
studied.

5. The Iv slot should contain the variables that whose
effect npon the dependent variable are being studied.

6. The RV slot should contain one or more variables that
are being studied.

7. The PURPOSE slot should contain the overall goal of
the funding source.

8. The WHO-FOR slot should contain an instance of a
social-group that will benefit from the proposed re-
search and funding.

9. The SETTING slot shonld contain the place in which
the object will be studied.

I . S PG

10. The LOCATION slot should contain a geographical place

to which funding is restricted.

Relations for organizing knowledge in GRANT’s knowledge
base:

1. The CAUSES slot should contain a concept that has a
causal association with the node.

2. The EFFECTS slot is used to represent relationships
that are not necessarily causal but nonetheless present.

3. The HAS- COMPONENT slot should contain those things
that make up the node. For example, one could say
that a earthquake has-compcnent shock-wave.

4. The HAS-MECHANISM slot is used to represent those
processes that a concept might have. For example a
seismology has-mechanism seismometer.

5. The HAS-PURPOSE slot is used to hold an instance of
an action. For example, a seismometer has-purpose
measure, with the object of the measure being shock-
wave.

4.6 Appendix 2

Path Endorsements for the Knowledge Base i
the rule set that is used in a bottom-up data driven search
from proposal to funding source. Many of these traversal
rules are effectively used to prune the number of potential
nodes to expand. A SUCCESS-NODF is any node that can
be found as a value for wither the TOPIC or PURPOSE slot
of a funding-source.

e The class SELF has 1 traversal rule

- Self - basically an identity rule for paths of length
0

e The class VERY-LIKELY includes 7 path endorsements,
all atomic matches. For example,
X subject— Y— subject-of—» SUCCESS-NODE
X— focus— Y— focus-of— SUCCES3-NODE
e The class LIKELY has over 50 path endorsements rep-

resenting semantic matches between a proposal and au
agency that is likely to fund it. For example,

— X subject— Y— isa— Z- subject-of » SUCCESS-

NODE
X— subject— Y— component-of— Z— focus-
of » SUCCESS-NODE

X— done-by— Y— does— object-of — SUCCESS-

NODE

o The class MAYBE has 18 path endorsements. These

-41-

represent semantic matches between a proposal and
funding agencies that are somewhat less likely to fund
the research, for example:

—~ X— focus— Y— subject-of— Z— subject-of—
SUCCESS-NODE
- X— object— Y— focus-of —» Z— subject-of - SUCCESS-
NODE
- X— object— Y— object-of— Z— focus-of + SUCCESS-
NODE

The class UNKNOWN accepts any path less than 6 links
long

The class of UNUSAELE pattk unes GRANT’s search.
Among these path- are any t .t contain a node with
an extremely high branching factor (e.g., science, ed-
ucation). Specific pathways of the kind listed above
include

—~ STEP*— isa— example— Y

— STEP*— subfield-of— has-subfield— Y
NOT(new-investigator)— STEP*— new-investigator

- NOT(minority-student)— STEP*- - minority-student

X— object— Y— subject-ol— Z- » focus-of » SUCCESS-
NODE

- X— rv— Y— dv-of— SUCCE3S-NODE
X— subject— Y— isa— Z— dv-o7 - SUCCESS-

NODE

5. Plausible Inference

This research is concerned with the formal underpin-
nings of common sense plaw Lie infcrence, the ability
to give plausible answers to arbitrary questions from
a very large knowl :dge base of associated statements.
The goal is to find one or more answers to a question
by consulting the kncwledge base, and to say which of
the answers are most credible. This has been a goal of
Al since its earliest days (McCarthy, 1958, 1968), and
is now seeing a resurgence (Collins, 1978a,b; Lenat et
al, 1986). Tlie motivation for such work cornes fiom the
increasing realization that powerful Al programs will
depend on very large knowledge bases. It will be neces-
sary for the system to use the Lnowledge base to answer
questions that were not anticipated at the time of its
construction. To handle both the broad ranging nature
of possible queries, and to make usc of large amounts
of knowledge in an efficient manncr, it is expected that
the use of hcuristics, or plausible inference rules, as well

as traditional truth-preserving on vill be necessary.

Our research is directed by these concerns, as well as by
a desire to bring & fermalism to plausible reasoning sim-
ilar to that enjoyed by deductive jogic, so that .osters
using plausible reasoning need nct have the: s nantics
established on a case-by-case, ad hoc basis.

The most important question to be answered ubont
plausible inference is how to judge its credibility. Sinee
plausible inference need not be truth-preserving, some
other semantic property besides truth must be the basis
of judgments of credibility. We propose to develop a
semantics for common sense plausible inference based
on the associations that hold betwecn the antecedents
and consequents of inferences. Our approach is strongly
motivated by evidence-based control: the credibilit, of
a statemrent is represented by reasons why it may be
false, reasons that can be used to control backtracking
and retraction of plausible but false inferences.

Plausibie inferences, unlike deductive inferences, need
not be truth-preserving. The distinction is clear in a
contrast between two rules of inference, mnodus ponens
and abduction:

Modus ponens is truth-preserving: if A - B and A
are true. B cannot be false. Abduction is arule of plau-
sible inference because A is a plausible conclusion given
A — B and B, but this conclusion is not guaranteed to
be true, as the conclusion B is in modus ponens.

Since rules of plausibie inference do ot make guar-
antees about the truth values of their conclusions, how
are we to assess the credibility of conclusions of plausible
inference? In the deductive case we associate credibil-
ity with the semantic property truth: true statements
are credible, false statements are not. ‘What semantic
property of conclusions derived by plausible inference
will be associated with credibility? We could use truth,
since some conclnsions of plausible inference lrave truth
values. The proolem is that rules of plausible infereice
make no guarantees about these truth values, as rules of
deductive iuference do. So the question remains: What
properties of conclusions are preserved by rules of plau-
sible inference and are the basis for judgments of credi-
bility?

Truth is not the semantic property we seek to pre-
serve in plausible inference. This is because of our ai’
ing interest in uncertainty, the state of not knowing
whether a proposition is true or false. Many attempts
have been made to modify deductive logic to repre-
sent uncertainty, including modal logics, 3-valued log-
ics, nonmonotonic logics, fuzzy logics, and probabilistic
logic (Turner, 1984, Zadeh, 1975; Nilsson, 1984) Some
of these approaches “sequester” nncertainty by intro-
ducing a new argument that represents the uncertainty
but is itself true or false. Modal logics do this. Other
approaches augment the valt s true and false; for exani-
ple, three-valned logics add the value “unknown.” and

=

fuzzy logics introduce numeric argume;its. Nomnimono-
tonic logics go further and replace the notion of truth
with one of support. Nonmonotonic formulations differ:
i McDermott and Doyle’s version, the notion of truth
is generalized to support and falsity to lack of support,

(McDermott ard Doyle, 1980).

Although uncertain statements are neither tru- nor
false one can say a great deal more about themr. F .en-
sions to logic, however, say little. With the possible ex-
ception of nonmonotonic logic and dependency-directed
backtracking, none of the extensions to logic enable us
to say why we are uncertain and what we might do
about it (de Kleer, et al. 1977). Shortly, we will dis-
cuss an alternative approach, but first we must address
another common paradigm in Al for plausible inference
and explain why we are avoiding it.

Much of the Al community favors probabilistic rep-
resentacions of uncertainty. We believe that, with one
exception, the semantics of these representations are
opaque. The exception is when the probabilities are
relative frequenc:ss, combined by Bayes’ theorem. This
case is akin to deductive inference in that a semrantic
property (relative frequency) is guaranteed to be pre-
served by a rnle of inference (Bayes’ theorem). Just
as we associated credibility with truth in deductive in-
ference, we can associate it with relative frequency in
probabilistic inference. In both cases, we can guarantee
that the credibility of a conclusion can be unambigu-
onsly determined. Unfortu -tely, the numbers used ir
knowledge systerns are not relative frequencies. Until
we know what they represent, we cannot know whether
their intent or meaning is preserved by the functions
that are used to combine them. The plethora of com-
bining functions discussed in the Al literature suggests
that ao common interpretation of degrees of belief is
available (Duda and lart, 1976; Pearl, 1982: Shafer,
1976).

So we are led back to the question, if truth or relative
frequency are not the basis of credibility when reasoning
under uncertainty, what is? Whet properties of state-
ments determine their credibility, and can we guarantee
that these properties are preserved by inference rules?
In Section 4 we saw that the credibility of iuferences
depends on the semantic associations on which they are
based. For example, if a researcher is interested in VLS
layout, and a funding agency is interested in electronics,
the fit between thein is good and the agency is apt to
fund the proposal. The seinantic association bet'veen
electronics and VLSI is “has-subfield,” and it is the ba-
sis of this plausible inference:

interested-in(agency, electronics)
has-subfield (electronics, VLSI)

interested-in(agency, VLSH)

|

.

In brief, degree of fit between two objects, X and Y,
was defined to mean that some rule of plausible infer-
ence could be invoked to conclude interested-in{agency,
Y) given interested-in(agency, X).

The GRANT system {Section 4) sets the stage for
the current research. Tt is the first step toward a cour-
mon sense plausible inference system as defined above
— a program that answers arbitrary questions from a
large, associative knowledge base. But GRANT does
not, in fact, answer arbitrary questions. It answers the
single question, “If a funding agency is interested in X,
will it be interested in Y?" It can be generalized to a
common sense plausible inference system as follows:

1. Assume that all questions are about properties
of objects; for example, “Does Fido have fur,”
or “Is coughing caused-by bronchitis.” Abbreviate
such questions R{0;,0;)7; for example, caused-
hy(coughing,bronchitis)?.

2. The answer to R{0;,02)7 is yes if the knowledge
base contains O, and O, connected by R. The an-
swer is plausible if there is a rule of plausible in-
ference of the form

Q(03,0,)?

R{05,01)

R{0,,0,)
and Q(Os, 03)7 is plausible. For example, imagine ask-
ing a system, “Are gin-and-tonics intoxicating?” or, has-
effect(zin-and-tonic, intoxication)? Assume that the ob-
jects gin-and-tonic and intoxication are not linked by
has-effect in the knowledge base. The question can be
answered, however, by plausible inference using the rule

has-component(x,y)?
haszeffect(yiz)

has-effect(x,z)

and the knowledge that gin-and-tonics contain alcohol
and alcohol is intoxicating:

has-component{gin-and-tonic,alcohol)?
has-effect(alcohol,intoxication)

has-effect(gin-and-tonic,intoxication)

Property inheritance in frame systems is a special
case of this kind of inference. The rule for property
inheritance is

isa{X,Y)
R(Y,Z)

R(X,Z)

<=

where R is any relation. For example, isa{collie,dog)
and part-of(dog,fur) implies part-of{collie,fur). The ap-
proach we propose here allows us to infer the answers
to questions based on semantic associations other than
isa. Thus, the approach unifies several kinds of plau-
sible inference, including causal inference {Weiss et al,
1977).

The model of plausible inference is not complete,
however, since it lacks statements about the credibility
of inferences drawn by plausible inference rules. Obvi-

ously, do not intend to include rules that draw er-
ror - mclusions, but credibility is not guaranteed,
as logic, by plausible inference. We discussed

how our rules implement a notion of credibility based
on degree of fit, but this still does not guarantee credi-
bility. We know of two general approaches to this prob-
lem. One is to attach to each conclusion a set of coni-
tions that, if inet, would increase its credibility. Collins,

who developed this idea, calls these certainty conditions

{Collins, 1978b). The other is to attach a set of con-
ditions that, if met, would decrease credibility. We
have called these negative endorsements (Cohen, 1984).
From the standpoint of control, certainty conditions can
guide a system to increase its belief and negative en-
dorsements can help a system recover from errorful con-
clusions by pointing to reasons a conclusion might he
wrong. Obviously, both are required for evidence-based
control.

Given a set of rules of plausible inference, with rea-
sons to believe and disbelieve their conclusions, we can
engage in a range of common sense plausible inference
tasks. Our proposed work thus involves several stages:

o Develop common sense plausible inference rules.
These are based on semantic associations, so clearly
we need a set of associations at the outset. We be-
gan with the associations in GRANT’s knowledge
base. Next, we generated all combinations of as-
sociations of the form

AI (xvy)
AZ(YaZ)

Ay(x,2)

These can be filtered by case-semantic consider-
ations: y :nust be a particular kind of object to
fill the A, case of x, and z is also restricted by its
relation to y. In many cases, though, z will not
fill the A, case of x, and so a potential rule can
be filtered out. Even with this filtering, GRANT’s
associations generated about 600 rules of plausible
inference.

ey

The rules are further pruned by automatically gen-
erating, from GRANT’s knowledge base, exam-
ples of inferences made by the rules. Thus we can
select empirically a set of rules that make a high
proportion of truly plausible inferences.

Endorse the rules. Given these rules it remains
to specify the conditions under which they are
more or less likely to generate plausible conclu-
sions. This work remains to be done.

o Test the rules. Recently, Cohen et al. (1985)
tested GRANT by comparing its performance again
that of an expert. The same approach will be used
to test our common sense plausible inference sys-
tem both in the GRANT demain, for which we
have a very large associative knowledge base, and
in other associative domains such as causal rea-
soning.

Further extensions involve generalizing rules of plau-
sible inference to include conjunctions, negations, ani
quantification. It will probably be easy to make theve
extensions given the propositional form of the rules as
shown above, However, the inference mechanisin that
underlies GRANT is a tightly-controlled spreading ac-
tivation. This has several advantages that are discussed
in Cohen et al. (1985), so we want to maintain this ap-
proach in our proposed work. We currently know how to
model the plausible inference rules above as spreading
activation, but we are not sure how to extend this ap-
proach when the rules include conjunctions, negations,
and quantifiers.

The result of this work will be a set of rules of in-
ference whose plausibility for the GRANT knowledge
base has been discovered empirically and confirmed by
comparison with expert judgment. We hope, however,
to go beyond this result to explore the reasons WII'Y
the rules discovered are plausible, in what situations
they would not be plausible, etc. To this end, we plan
to extend our work on plausible reasoning to domains
that already have algorithmic solutions {e.g. deadlock
prevention in operating systems). The use of an algo-
rithmic solution as a foil for plausible ones will aid in
the discovery of formal characterizations of the nature
of plausible inference rules.

REFERENCES

[1] Bonisonne, P. 1985. Reasoning with uncertainty
in expert systems. International Journal of Man-
Machine Studies, 22:3.

[2] Clancey, W.S., 1984. Classification problem solv-
ing. Proceedings of the AAAI p.49.

(3] Clancey, W. 1983. The advantages of abstract con-
trol kinowledge in expert systems design. In Pro-
ceedings of the Third National Conference on Arti-
ficial Intelligence.

[4] Cohen, P. and Stanhope, P. 1986. Finding research
funds with the GRANT systein. Proc. 6th Inter-
national Workshop on Ezpert Systems and Their
Applications, April 28-30, 1986, Avignon, France.

Cohen, P. , Davis, A. , Day, D. , Greenberg, M. ,
Kjeldsen, R. , Lander, S. , and Loiselle, C. 1985.
Representativeness and Uncertainty in Classifica-
tion Systems Al Magazine, 6(3), 136-149.

[5

Cohen, P. and Gruber, T. 1985. Reasoning about
uncertainty: A knowledge representation perspec-
tive. Pergamon Infotech State of the Art Report.

(6

Colien, P. 1985. Ileuristic reasoning about uncer-
tainty: An Al approach. London: Pitman Ad-
vanced Publishing. London.

-3

Cohen, P. 1984. Progress Report on the Theory of
Endorsements: A Heuristic Approach to Reasoning
About Uncertainty. COINS Technical Report 84-
15.

(8

[9] Cohen, P. and Grinberg, M. 1985. A theory of
heuristic reasoning about uncertainty. The Al Mag-
azine. Summer, 1983,

[10] Cohen, P., and Feigenbaum, E. 1982. The Hand-
book of Artificial Intelligence. Volume 3. Los Al-
tos, CA:Williamn I. Kaufmann, Inc.

[11] Collins, A. 1978a. Fragments of a theory of human
plausible reasoning. (D. Waltz, Ed.) Theoretical
Issues in Natural Language Processing. Urbana,
1L: University of Illinois.

[12] Collins, A. 1978b. Human plausible reasoning. Cain-
briuge, MA: Bolt, Beranek and Newman, Inc., Re-
port No. 3810.

[13] Davis, R. 1985. Interactive transfer of expertise.
In Rule-based ezpert systems, B. Buchanan and E.
Shortliffe, (Eds.) Addison-Wesley.

—y

. 2

B S it s o

[14]

[15]

[16]

(18]

[19]

[20]

(21]

22]

23]

[24]

(23]

126]

de Kleer, Johan; Doyle, Jon; Steele, Guy L., Jr.;
Sussman, Gerald Jay, 1977. AMORD: Explicit Con-
trol of Reasoning.Proc. Symposium on Artificial
Intelligence and Programming Languages, SIGPLAN
Notices 12(8), and SIGART Newsletter, 64, 116-
125.

Doyle, J., 1979. A truth maintenance system. Ar-
tificial Intelligence, 13, 81-132.

Duda, R. O. , Hart, P. E. , and Nilsson, N. 1976.
Subjective Bayesian methods for rule-based infer-
ence systems. Technical note 124, Al Center, SRI
International, Menlo Park, CA.

Hayes-Roth, B. 1985. A blackboard architecture
for control. Artificial Intelligence, Vol. 26, pp.
251-321.

Hayes-Roth, F., 1978. The role of partial and best
matches in knowledge systems. Pattern Directed
Inference Systems, Waterman, D., [layes-Roth, D.,
and Lenat, D. (Eds). Academic Press.

Hayes-Roth, F. and Lesser, V. 1977. Focus of at-
tention in the Hearsay-1I speech understanding sys-
tem. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence.

Howe, A., Cohen, P. Comparing alternatives in de-
cision making. EKSL Memo, University of Mas-
sachusetts, January 1986.

Kahneman, D. and Tversky, A. 1982. Judgment
under uncertainty; heuristics and biases. Judgment
under uncertainty, heuristics and biases, D. Kah-
neman, P. Slovic, A. Tversky (Eds.) Cambridge:
Cambridge University Press.

Kjeldsen, Rick, 1986. Learning traversal rules for
semantic nets. EKSL Working Paper.

Lenat, Doug; Prakash, Mayank; and Shepherd, Mary
CYC: Using Common Sense Knowledge to Over-
come Brittleness and Knowledge Acquisition Bot-
tlenecks. Al Magazine, 6(4), 65-85.

McCarthy, John, 1958. Mechanization of Thought
Processes. Proc. Symposium, National Physics
Laboratory, 1, 77-84, London.

McCarthy, John, 1968. Programs with Common
Sense. Semantic Information Processing, 403-418,
edited by M. Minsky, Cambridge, MA: The MIT

Press.

McDermote, D. and Doyle, J. Non-m~onotonic Logic
1. Artificial Intelligence 18, 27-39.

45~

(27]

28]

(29]

[30]

31)

[32]

33

(34]

(35]

(36]

[37]

(38]

(39]

[40]

Nilsson, Nils J. , 1984. Probabilistic Logic. SRI
Al Center Technical Note 321, SRI International,
Menlo Park, CA.

Patel, V. and Groen, G. 1986. Knowledge based
solution strategies in medical reasoning. Cognitive
Sctence, Vol. 10, pp. 91-116.

Payne, J., Braunstein, M., Carroll, J. Exploring
predecisional behavior: an a'ternative approach to
decision research. Organtzational Behavior and Hu-
man Performance, 1978, Vol.22, pp. 17-44.

Pearl, J., Leal, A., Saleh, J. GODDESS: a goal-
dirested decision structuring system. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 1982, Vol.4, pp. 250-262.

Pearl, J. 1982, Reverend Bayes on Inference En-
gines: a Distributed Hierarchical Approach. Pro-
ceedings of the National Conference on Artificial
Intelligence, Pittsburgh, PA, 133-136.

Sage, A. & White, C. ARIADNE: a knowledge-
based interactive system for planning and decision
support. IEFEE Transactions on Systems, Man,
and Cybernetics, 1984, Vol.14, pp. 35-47.

Shafer, G. 1976. A Mathematical Theory of Fui-
dence. Princeton: Princeton University Press.

Shortliffe, E. and Buchanan, B. 1975. A model of
inexact reasoning in medicine. Mathematical Bio-
sciences, Vol. 23, pp. 351-379.

Svenson, O. Process descriptions of decision mak-
ing. Organizational Behavior and Human Perfor-
mance, 1979, Vol.23, pp. 86-112.

Szolovits, P. and Pauker, S.G. 1978. Categorical
and Probabilistic Reasoning in Medical Diagnosis.
Artificial Intelligence, V.11, pp. 115-144

Turner, Raymond, 1984. Logics for Artificial In-
telligence. Chichester: Ellis Howard Limited.

Weiss, S. , Kulikowski, C. , and Safir, A. 1977. A
model-based consultation system for the long-term
management of glaucoma. IJCAJ 5, 826-832.

Wesley, L.P. 1983. Reasoning about control: the
investigation of an evidential approach. Proceed-
ings IJCAI-83, pp. 203-206.

Zadeh, L.A. 1975. Fuzzy logic and approximate
reasoning, Synthese, Vol. 30, pp. 4107-428,

[- e

e

~

PROGRESS IN REASONING
WITH INCOMPLETE AND UNCERTAIN INFORMATION*

Part [: Uncertainty Calculi: How Many, When, and Why?
Part II: A Hierarchical Model Paradigm for Reasoning by Analogy
Part III: Theories of Non-Monotonic Reasnning and Reason Maintenance

Piero P. Bonissone, Gilbert B. Porter III, Allen L. Brown, Jr.
General Electric Company
Corporate Research and Development
P.O. Box 8
Schenectady, New York 12301

ABSTRACT

This paper summarizes our research etforts in the area of
Reasoning with Incomplete and Uncertain Information, and
is organized into three parts covering reasoning with uncer-
tainty, reasoning by analogy, and reasoning with incom-
pleteness. Part I, entitled Uncertainty Calculi: How Many,
When, and Why?, is a collection of two papers describing the
evolution of an architecture for reasoning with uncertainty.
The first paper of this collection, entitled Selecting Uncer-
tainty Caleuli and Granularity: An Experiment in Trading-off
Precision and Complexity, describes the experiments that led
to the derivation of equivalence classes among the
(apparently) different uncertainty calculi as a function of the
input granularity. The second paper, entitled Summarizing
and Propagating Uncertain Information with Triangular Norms,
describes an architecture for reasoning with uncertainty,
which is organized in three layers: representation, inference,
and control. The representation loyer describes the struc-
ture required to capture information used in the inference
layer and meta-information used in the control layer. The
inference layer defines uncertainty calculi based on Triangu-
lar norms (T-norms), intersection operators whose truth
tunctionality entails low computational complexity. The con-
trol layer specifies the policy selection for the different cal-
culi used in the inference layer, based on their meanings,
properties, and contextual information. Conflicts and
ignorance measurements are also proposed.

This work was partially supported by the Detense Advanced
Research Projects Agency (DARPA) contract F30602-85-C-0033.
Views and conclusions contained in this paper are those ot the
authors and should not be interpreted as representing the
otticial opinion or policy ot DARPA or the U.S. Government.

a

which is based on a multi-staged decomposition; the
knowledge representation scheme which uses a hierarchy of
models that are ordered by complexity; the search strategy
for dynamically creating a domain model for the current
goal, and the global control method for forming an analogy.
The supporting model paradigm is then described in detail
and a tew preliminary res<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>